1977年的论文:月球俘获假说再次推演
本帖最后由 gohomeman1 于 2009-11-3 23:05 编辑首先感谢正电子提供了文献的原始链接,接着要大力鸣谢愚石兄提供的免费PDF下载。虽说下载来的PDF是图形,但通过OCR软件,还是能识别为文本的,当然这样就更慢了。免费的链接在此:
http://cdsads.u-strasbg.fr/cgi-bin/nph-iarticle_query?1977Moon...17..353W&defaultprint=YES&filetype=.pdf
1977年啊,我想论坛7万注册ID中的6万估计还没出生吧。那一年,四人帮粉碎才几个月;那一年,中国的高考才恢复;那一年,我才读小学。也是从那一年开始,中国的改革开放逐步酝酿……
科学发展了这么多年,文献中的某些东西可能已经错误了,但其研究的方法是没有问题的,结论供大家参考。我们现在知道,月球的主流形成观点是碰撞说。
我先把原著的版权声明放在最前面。本文也许有翻译过,但我没去查询过,以下翻译肯定是我的原创无疑。
The Moon 17 (1977)353-358. All Rights Reserved.
本文原载于《月球》期刊1977年第17期353~358页
Copyright © 1977by D. Reidel Publishing Company, Dordrecht-Holland
版权所有:D·赖狄尔(Reidel)出版公司,荷兰多德雷赫特市;Kluwer学术出版社(现在是集团了)
©Kluwer AcademicPublishers . Provided by the NASA Astrophysics Data System
本文相关数据由美国宇航局天文数据系统提供。 本帖最后由 gohomeman1 于 2009-11-4 00:50 编辑
TheLunar Capture Hypothesis Revisited
月球俘获假说的再次推演
R.R.WINTERS
Department ofPhysics and Astronomy, Denison University, Granville, Ohio, U.S.A
俄亥俄州格兰维尔市, 丹尼森大学天体物理系
and R.J.MALCUIT
Department ofGeology, Denison University, Granville, Ohio, U.S.A
俄亥俄州格兰维尔市, 丹尼森大学地质系
(Received 5September, 1977)
收到日:1977.9.5
Abstract
摘要
Recent work on planetary formationprocesses have suggested that ancient planetary bodies could have been warmerand, therefore, more easily deformable soon after formation than at present. Byuse of the estimates for the elastic parameters believed to be appropriate fora warm ancient Moon and Earth, it is shown that the energy of deformation ofthe planetary bodies during a close gravitational encounter was sufficient toeffect capture.
据近来对行星形成过程的研究推测, 早期(古老)的星子相当的热,因此形成后相对于当前的行星(/卫星)就很容易变形。对早期地球和月球弹性参数的合理估算显示,在近距离引力过程中引力势能转化为(星子的)变形能足以实现俘获过程。 本帖最后由 gohomeman1 于 2009-11-11 16:22 编辑
正文
The lunar capture hypothesis has beenpromoted for various reasons by Urey (1952), Alfven (1954), Cloud (1968, 1972),Singer (1968, 1970), Gerstenkorn (1969), Alfven and Arrhenius (1972, 1976) and others. However, Kaula and Harris (1973) have shown that capture of a lunar-sized body with the physical properties of the present nearly rigid Moon is implausible. In this paper we show that capture of a warm (deformable) lunar-sized body is possible using plausible assumptions for the values of the interaction parameters.
月球俘获假说被多人以各种理由提出过,他们是Urey (1952), Alfven (1954), Cloud (1968,1972), Singer (1968, 1970), Gerstenkorn (1969), Alfven 和 Arrhenius (1972, 1976)等等。但是,1973年,Kaula 和 Harris联合证明像现在月球这么大、并几乎是刚体的星子要被俘获,实在是很不可能的事。在本论文中,我们将证明,通过一些尚未被证实的相互作用参数,俘获一个熔融的可变形月球大天体是可能的。
Information from the Apollo missions has led some investigators to favor a warm ancient Moon (Smith et al., 1970; Wood,1972). This idea has been most recently amplified by Wood (1975) and Walker et al.(1975) who suggest that the petrology of the ancient anorthositic lunar crust can be explained as having resulted from crystal fractionation and gravitational separation in a well-stirred global subcrustal magma chamber referred to by Wood (1975) as a magma ocean. The high temperature origin of lunar mare rocks also attests to a warm Moon at least a billion years after its formation.
根据阿波罗任务的(岩样)信息,部分调研者对早期月球是温暖熔融的青睐有加(参见1970年史密斯团队报告稿和1972的伍德报告)。1975年,伍德和沃克团队进一步加强了这个观点,他们推测:古老月球曾经是熔融的,充分对流、搅拌的全球性岩浆海洋中的重力分离和结晶分异过程能够解释辉长岩月壳的来历。月海表面岩浆岩的高温起源性也证明至少在其形成后的10亿年,月球是熔融的。
Several investigators have attempted torelate mare formation to tidal interactions with Earth (Kopal, 1966; Cloud,1968, 1972; Alfven and Arrhenius, 1969, 1976; Stuart Alexander and Howard,1970; Hartung, 1976; Friedlander and Smith, 1977). Lipskiy et al. (1966) andStuart-Alexander and Howard (1970) describe the maria as lying in a crude globalbelt mainly on the lunar front side. More recently, Malcuit et al. (1975)reported that several of the large circular maria (Orientale, Imbrium, Serenitatis,Crisium, and Smythii) are very nearly distributed along a lunar great circle.Two other trends associated with these particular maria are that the mean diameter of each decreases from Imbrium to the east and that the mean elevation of the mare surfaces decreases in the same direction (Wollenhaupt and Sjorgen,1972). Malcuit et al. (1975) suggest that this approximate great-circle pattern of large circular maria and associated trends may be the signature of a very close encounter with Earth.
部分研究者试图把地球起潮力与月海形成联系起来,他们是Kopal, 1966; Cloud, 1968, 1972; Alfven和Arrhenius, 1969, 1976; Stuart Alexander和Howard, 1970; Hartung, 1976; Friedlander和Smith, 1977等。1966年Lipskiy团队、1970年Stuart-Alexander和Howard 等指出月海主要位于一个天然的条带区并主要面向地球。不久前的1975年,Malcuit团队报告说东方海、雨海、澄海、危海、史密斯海等多个大型月海的分布位置非常接近于一个月面上的大圆,这几个特定的月海还有2个趋势:它们的主直径从雨海往东逐渐减少,而月海高度也同向减少(Wollenhaupt和 Sjorgen, 1972)。Malcuit团队推测,这些大型月海的接近大圆线的排列和高度递减,是月球曾非常接近地球的明证。 本帖最后由 gohomeman1 于 2009-11-4 17:42 编辑
For stable capture, enough orbital energy must be dissipated within the interacting bodies during one, or a few encounters, to change the lunar heliocentric orbit into a geocentric orbit within the sphere of influence (Roy, 1965; Opik, 1976) of Earth. We assume with Opik that 270 Re (Earth radii) is a reasonable logarithmic mean value for the radius of the Earth's sphere of influence. However, there is a transition zone (< 540 Re) in which capture can occur (Opik, 1976).
要形成稳定的俘获平衡,必须耗散掉足够的轨道运行能量。1965年Roy团队、1976年 Opik团队提出,这可以在地球引力范围内,通过一次或数次相互作用来实现,最终绕太阳旋转的月球进入绕地球转的轨道。我们假设Opik报告中270个地球半径(Re)是地球引力场的合理范围,当然,根据Opik报告,在540个Re的过渡区域内,俘获都可能发生。
Table I shows the minimum amount of orbital energy that must be dissipated for capture for various encounter speeds (V∞) and for two values for apogee (both within the Earth's sphere of influence). The table shows that capture from a nearly Earth-coincident orbit entails dissipation of about l0^35 ergs, the exact value depending on the encounter speed and the eccentricity of the capture orbit. The purpose of this paper is to show that, given certain narrowly defined orbital and elastic parameters, gravitational capture of a lunar-sized body is possible. Although the conditions on the orbital and elastic parameters are stringent, they are physically realistic conditions for planetary bodies in the early history of the solar system.
表1计算了在地球引力场范围内,设定近地点Rp=1.4Re,对应于两个初始的远地点(270、540Re),月球各种无穷远处初始速度(V∞)下,俘获完成时必须耗散的引力势能。表中数据表明,完成与地球轨道相符的俘获,至少要耗散约10的35方尔格(1035)的能量,准确数据依赖于俘获时的初始相对速度和轨道偏心率。本报告目的是:在给定小区间的轨道根数和弹性参数下,俘获月球这样的星子是可能的。虽然轨道和弹性条件很严格,但在太阳系早期的星子确实存在这样的条件。
TABLE I:Energy to dissipate for lunar capture within sphere of influence of Earth
表1:地球引力势能在月球俘获过程中的耗散。 本帖最后由 gohomeman1 于 2009-11-4 00:42 编辑
Munk and MacDonald (1960) show that the rate at which work is done in elastically deforming a body can be represented as the sum of two integrals
1960年,Munk和MacDonald在报告说,一个物体的弹性变形率可用两个积分之和表示
http://www.astronomy.com.cn/ucenterhome/attachment/200911/3/60314_125725817168uC.jpg (1)
The first integral represents the effects of compression, the second the effects of the disturbing stressesεij. Ignoring the effects of compression,Kaula and Harris show that the second integral can be written (for a satellite approaching the Earth to perigee distance rp) as
第一个积分表示挤压过程,第二个表示相应的应力(ε)过程。Kaula和Harris计算表明,在卫星接近近地点Rp的过程中,如果忽略挤压过程,第二个积分可以写为:
http://www.astronomy.com.cn/ucenterhome/attachment/200911/3/60314_1257258171f4YM.jpg (2)
where h and k are the Love numbers appropriate for the satellite, Me is the mass of the Earth, Rm is the radius of the satellite and P20 is the l = 2, m = 0 associated Legendre polynomial. According to Munk and MacDonald, the first integral in Equation (1) could result in an amount of stored energy equal to the second integral. However, in this paper we ignore the first integral. With this formulation it can be shown that the energy which can be stored in the body by elastic deformation is given by
其中的h, k是与该卫星相关的Love参数(不知道怎么翻译好?),Me是地球质量,Rm是卫星半径,P20是勒让德(Legendre)多项式在L=2,m=0时的解(相关内容参考这个链接:http://en.wikipedia.org/wiki/Legendre_polynomials,它是球对称条件下的常见的微分方程的解——gohomeman1注)。按照Munk和 MacDonald报告内容,方程式(1)中的第1项积分将导致能量的存储过程,并与第2项积分数值相等。不过,本报告将忽略第1项积分。弹性形变能够存储的能量由下面这个公式给出:
http://www.astronomy.com.cn/ucenterhome/attachment/200911/3/60314_1257258172LLRh.jpg (3)
Thus, they energy that can be stored in a deformed body can be described in terms of its Love numbers: h, the displacement Love number, and k, the potential Love number, and perigee.
由此,能存储于星子中的变形能量由它的一组Love参数决定:(形变)位移h,势能k和近地点Rp。 本帖最后由 gohomeman1 于 2009-11-12 14:55 编辑
Kaula and Harris (1973) used Love numbers that are appropriate for the present cold, rigid Moon - h = 0.033 and k = 0.020. Their argument is relatively simple and shows that only about 10^34 ergs could be stored in the deformed body and only a fraction of that energy would be dissipated. According to their analysis, the stored energy is much too small for capture in one pass, and Kaula and Harris conclude that capture by a gravitational encounter is implausible. Their beautifully simple argument is compelling.
1973年,基于相对简单的理由,Kaula和Harris使用与当前寒冷刚性的月球匹配的参数:h=0.033和k=0.020,他们的计算表明,星子形变只能存储约10的34方(1034)尔格的能量,并仅有少量的能量被耗散。根据他们的计算,一次接近中转移存储的能量太少,故此他们的结论是通过引力交会过程实现俘获是难以想象的。他们美妙而简单的论述引人注目。
But, when one looks at the alternatives to gravitational capture, one finds them no less implausible, e.g., one finds ad hoc. suggestions such as multibody breakup and subsequent reformation (e.g., Mitler,1975; Smith, 1976).
但是,当我们审视其他优选的重力俘获方案时,我们就会发现同样难以置信。例如,1975年Mitler提出、1976年Smith予以改良的多体系统解体方案以及它们的改进型。
Hence, we have re-examined the Kaula and Harris model in an attempt to make the model more nearly realistic by using elastic properties appropriate for a warm, deformable ancient Moon. Since the Love numbers contain all information about the elastic properties of the deformed body, it is these numbers which need to be recalculated. We use the results of a model of planetary tidal deformation which was developed by Love (1911). The model treats the deformation of a compressible self-gravitating body which is characterized by a rigidity μ and the first Lamé constant λ. For the present work, we assume the tidal deformation to be due to a potential of the second harmonic and, therefore, the radial deformation can be described by the associated Legendre polynomial P20.
因此,我们重新考察了Kaula和Harris的模型,通过引入弹性参数使其更近似于早期熔融的、可变形的月球。基于Love参数包含了一个弹性物体的所有弹性属性信息,这些参数应重新计算。我们使用的是1911年Love先生完成的行星潮汐变形模型的结果。模型认为,物体因自身引力产生的形变由其本身的特征刚度μ和引入的第一个常数λ决定。在当前的研究中,我们假设潮汐变形会产生二次谐波,因此半径变形量可以用勒让德多项式P20来描述。
Equations for calculation of the Love numbers are
计算Love参数的方程式如下:
http://www.astronomy.com.cn/ucenterhome/attachment/200911/3/60314_1257259935ceGz.jpg
The functions α,β,ψ,χ,etc. depend on the boundary conditions and elastic properties of the deformed body and are defined in Love's work.
α,β,ψ,χ等函数依赖于变形物体的弹性属性和边界条件,这些工作早已由Love完成了。 本帖最后由 gohomeman1 于 2009-11-4 00:37 编辑
http://www.astronomy.com.cn/ucenterhome/attachment/200911/3/60314_1257258689nPNd.jpg
Fig. 1. Scale diagrams for a homogeneous lunar model showing the relationship between the displacement and potential Love numbers, h and k, and body deformation at various perigee distances, rp.
In all cases (a.—d.), rp = 1.4 Re
(Earth radii), 2.0 Re, and 10 Re. (a) h = 0.15,k = 0.08, maximum radial displacement (mrd) at 1.4Re = 9.8%; (b) h = 0.30, k = 0.16, mrd = 20%; (c) h = 0.45, k=0.24,
mrd = 30%; (d) h = 0.60, k = 0.32, mrd = 39%.
插图1:均质月球模型下,(形变位移)量h和势能量k、近地点距离Rp与星子变形量之间的关系图解。在所有4 图中,近地点分别为Rp=1.4 Re(Re=地球半径,1.4Re为洛希极限)、2.0Re和10Re。(显然近地点越近变形越大),在1.4Re条件下:
a、h = 0.15,k = 0.08, 最大形变量(mrd)=9.8%;
b、h = 0.30, k = 0.16, mrd = 20%;
c、h = 0.45, k = 0.24, mrd = 30%;
c、h = 0.60, k = 0.32, mrd = 39%。 本帖最后由 gohomeman1 于 2009-11-4 17:46 编辑
Figure 2 shows the energy of deformation, ΔEstored, for various lunar body models. We have also considered the energy that can be deposited in a model ancient Earth. This Earth model is somewhat more deformable than the present Earth with Love number values approximately 50% larger than those for the present Earth. The total energy stored in the two interacting bodies is given by the curve labeled ΔEtotal.
插图2显示了不同月球模型下,形变可存储能量(对数纵坐标)与星子刚度(横坐标μ)的关系图。我们也考虑到能量可部分转移到早期地球星子中。早期地球星子模型的弹性形变能力比当前的刚性地球约大50%。能量存储在两个相互作用星子上的曲线是最上方的那条ΔEtotal。
Note that for the lunar rigidities μ≈5 X 1010 dynes/cm2 and λ/μ =1.25, approximately 4 x 1035 ergs are stored in the bodies.These values for the elastic parameters correspond to the lunar modelshown in Figure 1c and are consistent with Harrison's (1963)inhomogeneous lunar model 7, case 3 (see caption of Figure 2). Thedotted, dashed and dot-dashed lines indicate the energy required forcapture of a lunar-sized body under various conditions. Thus, if aboutone-fourth of the energy of deformation is dissipated, thengravitational capture of a lunar-sized body with reasonable elasticproperties and a low V∞ is possible in even a single close encounter.
下图中,月球的刚性系数μ 约为5 X 10的10次方(5 X 1010 )达因/平方厘米,而λ/μ = 1.25,能存储大约4X10的35次方尔格(4 x 1035)的能量。这样的月球模型对应于插图1c的情形,并与1963年Harrison报告中非均质月球的第7个模型、第3种类型相符。图中的点线、虚线和点划线指出在各种情形下,俘获月球大的星子需要存储(耗散)的能量值。由此我们可见,如果能够耗散大约1/4的形变能量,通过一次近距离的引力交互过程,地球俘获月球大星子是可能的,当然合理的弹性参数和较低的无穷远初始速度(V∞)是必要条件。
http://www.astronomy.com.cn/ucenterhome/attachment/200911/3/60314_1257259305gtH5.jpg
Fig. 2. Plot of stored energy (ΔEstored) vs rigidity (μ) for various lunar models (lower curve labeled ΔEmoon) and for combined Earth and Moon (upper curve labeled ΔEtotal).In both cases rp=1.36Re. For the lunar modelλ/μ= 1.25; for the earth model, h = 0.9, k = 0.5. Dotted line represents energy to be dissipated for capture of a lunar-sized body with V∞ = 0.5 km/sec into a geocentric orbit with apogee of 270Re. Dashed line represents energy to be dissipated for capture of a lunar-sized body with V∞ = 0.1 km/sec into a geocentric orbit with apogee of 270Re. Dot-dashed line represents energy to be dissipated for capture of a lunar-sized body with V∞ = 0.1 km/sec into a geocentric orbit with apogee of 400Re.o = Kaula and Harris (1973) estimate of the energy that could be stored in the present Moon during a close encounter. □ = energy that could be stored in Harrison's (1963) inhomogeneous lunar model 7, case 3 (h = 0.33; k = 0.19).
插图2:不同模型下,可存储能量(纵坐标)与星子刚度(横坐标μ)的关系图。斜下的直线为月球模型,其上方的曲线为地球和月球的综合模型。所有的情形下,近地点Rp=1.36地球半径(Re),月球模型的λ/μ= 1.25,地球模型的h=0.9,k=0.5。V∞为无穷远处月球星子相对于地球的初速度。
点线: V∞ = 0.5 km/s,远地点270Re,俘获月球需要耗散的能量值;
虚线: V∞ = 0.1 km/s,远地点270Re,俘获月球需要耗散的能量值;
点划线:V∞ = 0.5 km/s,远地点400Re,俘获月球需要耗散的能量值;
o 点: 1973年,Kaula和Harris估算的现在的月球如果发生一次与地球近距离的引力交会过程能够存储的能量(转化为热能);
□ 点: 1963年,Harrison报告中非均质月球的第7个模型、第3种类型下(h=0.33,k=0.19)存储的能量(刚好落在允许线上)。 本文的参考文献页,也就是最后一页。本页就不翻译了。 本帖最后由 gohomeman1 于 2009-11-4 00:13 编辑
翻译错误之处,欢迎指正。相关讨论,还是在原先的http://www.astronomy.com.cn/bbs/thread-122875-1-1.html进行吧!
链接已经改正,我很少用IE8发帖,但使用Firefox会出现英文错误,也讨厌(空格自动消失)。 翻译错误之处,欢迎指正。相关讨论,还是在原先的http://www.astronomy.com.cn/bbs/redirect.php?tid=122875进行吧!
gohomeman1 发表于 2009-11-3 23:22 http://www.astronomy.com.cn/bbs/images/common/back.gif
无法显示
。 3# gohomeman1
interaction parameters:相互作用参数
lunar-sized body :月球大小天体
暂时没时间看的更多 本帖最后由 其祥 于 2009-11-4 16:11 编辑
magma chamber 岩浆房(同magma reservoir)
g兄,在编辑帖子的时候,工具栏里有上标的功能,最后一个按钮就是。10^35可以表示为1035的。 本帖最后由 在哭 于 2009-11-11 09:40 编辑
正文
、雨海、澄海、危海、史密斯海等多个大型月海的分布位置非常接近于一个月面上的大圆(球面上的最短线——gohomeman1注),gohomeman1 发表于 2009-11-3 21:43 http://www.astronomy.com.cn/bbs/images/common/back.gif
嘿嘿,小更正:大圆不是“球面上的最短线”,“最短线”和大圆的关系应该是:“球面上2点间的最短线是经过这2点的大圆的劣弧”。
大圆是球面上以球心为圆心的弧圈,大圆也是球面上周长最长的弧圈。 For stable capture, enough orbital energy must be dissipated within the interacting bodies during one, or a few encounters, to change the lunar heliocentric orbit into a geocentric orbit within the sphere of influence (Roy, 1965; Opik, 1976) of Earth. 要形成稳定的俘获平衡,必须耗散掉足够的轨道运行能量。gohomeman1 发表于 2009-11-3 22:00 http://www.astronomy.com.cn/bbs/images/common/back.gif
恩,我觉得这是比较关键的一点,要达到俘获平衡,首先要有足够大的能量来到地球的引力圈范围,然后还要有足够的渠道把多于的机械能耗散掉并进入一个势能和动能可以平衡的轨道... 本帖最后由 在哭 于 2009-11-11 13:02 编辑
Kaula and Harris (1973) used Love numbers that are appropriate for the present cold, rigid Moon - h = 0.033 and k = 0.020. Their argument is relatively simple and shows that only about 10^34 ergs could be stored in the deformed body and only a fraction of that energy would be dissipated. According to their analysis, the stored energy is much too small for capture in one pass, and Kaula and Harris conclude that capture by a gravitational encounter is implausible. Their beautifully simple argument is compelling.
1973年,Kaula和Harris基于相对简单的理由,使用匹配当前寒冷刚体的月球参数:h=0.033和k=0.020,他们的计算表明,星子形变只能存储约10的34方(1034)尔格的能量,并仅有少量的能量被耗散。根据他们的计算,一次接近中转移存储的势能太少,故此他们的结论是通过引力交会过程实现俘获是难以想象的。他们美妙而简单的论述引人注目。
gohomeman1 发表于 2009-11-3 22:24 http://www.astronomy.com.cn/bbs/images/common/back.gif
我觉得这样或许更好,仅供参考:1973年,K和H(在他们的论文里)采用对当前寒冷刚硬月球适用的Love参数(h = 0.033 and k = 0.020)。他们的理由相当简单,而且他们的计算表明,仅有约10^34 erg的能量会被储存在形变的星体,而且其中仅有很少的一部分会耗散掉。根据他们的分析,(星子形变)转移储藏的能量(包括耗散的部分)远不足以(使得地球)通过一次(地月)接近而实现(月球的)俘获,由此他们得出结论,(地球)通过引力作用在与月球交互时俘获之是不合理的假说。他们美妙而简单的论述在当时相当引人注目。
改动只是很少的一部分,另外转移储存的不仅仅是(形变)势能,还可能包括熔融态月幔和地幔分别获得的动能,(由于非弹性形变)耗散掉转化得到的热能,地幔岩浆动能带来的电磁能.... 谢谢你的建议,合理的部分我马上修改。
gravitational encounter 翻译为“引力交会”是标准翻译。另外我那段确实没说清,我理解他们的原意是:通过形变存储的引力势能实在太少,一次交会根本不足以导致俘获成功;而多次交会的不确定性太多了。
所以原作者提出,早期星子是熔融的,这样的半流体状态,变形能力就强多了,可存储能量也多得多了。最后耗散这些能量自然只能通过热的方式,不过是否会改变行星的自转什么的,我想这肯定不是本篇论文想探讨的问题,你提到的电磁能也同样。模型是越简单越好,那些实际情况肯定比模型复杂得多,但物理抽象时一般都予以忽略,除非有证据表明不能忽略。 本帖最后由 在哭 于 2009-11-12 13:41 编辑
正是这里,我觉得我和你有个理解上的差异,你说是把原有的引力势能储存起来,但我理解的是把原来的机械能(主要是动能,当然,也包括引力势能)储存成星子的“弹性势能”。所以我认为他那个energy不宜翻译为“势能”。我们知道,被俘获星体它的动能和引力势能本身就会在略过(靠近/远离)的过程中相互转换,无所谓储藏不储藏。说到储藏的就是把这种宏观运动的总体机械能转移储藏到自身弹性形变带来的势能上(当然,我也不建议用弹性势能来代替全部,因为还有熔融岩浆的动能和耗散掉的部分...既然论文本身没有点明,我觉得不宜冠以势能,无论是源引力势能还是目标的弹性势能)。
貌似论文没有提到multiple passes的问题,所以我建议按照原来的句式直接翻译可能更好,我当初想给你些改动的建议就是因为我第一次看你的译文没看明白,重新看英文才知道意思,呵呵(或许是我接触的少)
耗散当然最直接的是变成热,但我想说电磁波耗散肯定也是必然的(对于有岩幔和磁极的天体),当然,这肯定不是这篇文章要讨论的,我说那些都是在说那个“能量”翻译成“引力势能”貌似不妥...仅供参考 我先改为“能量”吧,近地点势能更小,所以无法储存负的能量,我想这样是说得通的。
我不知道论文中主要的耗散方式是不是潮汐摩擦(既然是熔融的,当然可以产生大型潮汐了),不过我想电磁能方式应该是予以忽略的。
我的理解是,由于星子可以变形(半流体),所以当其过近地点后离开地球时,星子受地球吸引而变形,由此消耗了引力势能。你的理解大概是:此时星子的变形使各部分运动速度不一,由此储存了部分动能。当星子逐渐远离地球时,它再逐步回复其球形,此时由于岩浆本身的内部阻力很大,大量能量将消耗为热能。
我相信摩擦热应该是能量耗散的主体,至于星子本身的弹性势能什么的,应该是很快就全部被耗散掉的;电磁能我相信不是主流的,这方面你我即使观点不同,我看也暂时搁置吧。如果你认为电磁能很重要,需要大量的资料论证,以后单独发帖来说比较好。 哦,我倒不是坚持电磁能是主要耗散的来源,我也没有任何数据方面的证据,我只是说他或许不该在这个阶段就被忽略掉。我再简单说下我的主要观点,那就是:靠近过程伴随的应该是星子宏观机械能(动能+引力势能)向弹性势能的转换。这个过程中,星子的动能和引力势能本身也会在引力这种保守力的作用下相互转换。
页:
[1]
2