泰坦研究出了新成果
好多文章,我一个人翻译不完In situ measurements of the physical characteristics of Titan's environment
M. Fulchignoni(1,2), F. Ferri(3), F. Angrilli(3), A. J. Ball(4), A. Bar-Nun(5), M. A. Barucci(1), C. Bettanini(3), G. Bianchini(3), W. Borucki(6), G. Colombatti(3), M. Coradini(7), A. Coustenis(1), S. Debei(3), P. Falkner(8), G. Fanti(3), E. Flamini(9), V. Gaborit(1), R. Grard(8), M. Hamelin(10,11), A. M. Harri(12), B. Hathi(4), I. Jernej(13), M. R. Leese(4), A. Lehto(12), P. F. Lion Stoppato(3), J. J. López-Moreno(14), T. Mäkinen(12), J. A. M. McDonnell(4), C. P. McKay(6), G. Molina-Cuberos(15), F. M. Neubauer(16), V. Pirronello(17), R. Rodrigo(14), B. Saggin(18), K. Schwingenschuh(13), A. Seiff(20), F. Simões(10), H. Svedhem(8), T. Tokano(16), M. C. Towner(4), R. Trautner(8), P. Withers(4,19) and J. C. Zarnecki(4)
Abstract
On the basis of previous ground-based and fly-by information, we knew that Titan's atmosphere was mainly nitrogen, with some methane, but its temperature and pressure profiles were poorly constrained because of uncertainties in the detailed composition. The extent of atmospheric electricity ('lightning') was also hitherto unknown. Here we report the temperature and density profiles, as determined by the Huygens Atmospheric Structure Instrument (HASI), from an altitude of 1,400 km down to the surface. In the upper part of the atmosphere, the temperature and density were both higher than expected. There is a lower ionospheric layer between 140 km and 40 km, with electrical conductivity peaking near 60 km. We may also have seen the signature of lightning. At the surface, the temperature was 93.65 0.25 K, and the pressure was 1,467 1 hPa.
1. LESIA, Observatoire de Paris, 5 Place Janssen, 92195 Meudon, France
2. Université Denis Diderot – Paris 7, UFR de Physique, 2 Place Jussieu, 75006 Paris, France
3. CISAS "G. Colombo", Università di Padova, Via Venezia 15, 35131 Padova, Italy
4. PSSRI, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
5. Department of Geophysics and Planetary Sciences, University of Tel Aviv, 69978 Tel Aviv, Israel
6. NASA/AMES Research Center, MS 244-30, Moffett Field, California 94035, USA
7. ESA Headquarters, Science Directorate, 8-10 rue Mario-Nikis, 75015 Paris, France
8. ESA-ESTEC, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands
9. Agenzia Spaziale Italiana, Viale Liegi 26, 00198 Roma, Italy
10. CETP-IPSL, 4 Avenue de Neptune, 94107 Saint Maur, France
11. LPCE-CNRS, 3A, Avenue de la Recherche Scientifique, 45071 Orléans cedex 2, France
12. Finnish Meteorological Institute (FMI), Vuorikatu 15 A 00100 Helsinki, Finland
13. Space Research Institute, Austrian Academy of Sciences (IWF), Schmiedlstrasse 6, 8042 Graz, Austria
14. Instituto de Astrofisica de Andalucia (IAA-CSIC), PO Box 3004, 18080 Granada, Spain
15. Applied Electromagnetic Group, Department of Physics, University of Murcia, Murcia 30100, Spain
16. Institut für Geophysik und Meteorologie, Universität zu Köln, Albertus-Magnus-Platz, 50923 Köln, Germany
17. DMFCI, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
18. Politecnico di Milano, Dipartimento di Meccanica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
19. Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, Massachusetts 02215, USA
20. ‡Deceased
Correspondence to: F. Ferri3 Correspondence and requests for materials should be addressed to F.F. (Email: francesca.ferri@unipd.it).
那位高手告诉我situ测量是?
在situ 测量中泰坦环境的物理特性
M. Fulchignoni(1,2) , F. Ferri (3) , F. Angrilli(3) , A. J. Ball (4) , A. Bar-Nun (5) , M. A. Barucci(1) , C. Bettanini(3) , G. Bianchini(3) , W. Borucki(6) , G. Colombatti(3) , M. Coradini(7) , A. Coustenis(1) , S. Debei(3) , P. Falkner(8),G. Fanti(3) , E. Flamini(9),V. Gaborit(1),R. Grard(8),M. Hamelin(10,11),A. M. Harri(12),B. Hathi(4),I. Jernej(13),M. R. Leese(4),A. Lehto(12),P. F. Lion Stoppato(3),J. J. L ó pez-Moreno(14),T. M?kinen(12),J. A. M. McDonnell(4),C. P. McKay(6),G. Molina-Cuberos(15),F. M. Neubauer(16),V. Pirronello(17),R. Rodrigo(14),B. Saggin(1,K. Schwingenschuh(13),A. Seiff(20),F. Sim?es(10),H. Svedhem(8),T. Tokano(16),M. C. Towner (4), R. Trautner(8),P. Withers (4,19) 和 J. C. Zarnecki(4)
摘要
以较早的地面基地观测的和飞行的数据为基础, 我们知道了泰坦主要的大气成分是氮,还有一些甲烷,但是它的温度和压力描述很少,这是因为没有详细的确定的有力资料。 大气的电 ('闪电') 的范围迄今也是未知的。这文章里我们报告了温度和密度的大概范围,这是使用惠更斯探测 大气结构的工具 (HASI) 所探知的,测量范围是从 1,400 km 的高度到泰坦表面。 在大气的上面部份,温度和密度中两者都比预期的高。 在 140 km 和 40 km 之间有密度比较低的电离层 层,她的导电性在靠近 60 km 到达最高。 我们该能看到闪电的信号。 在泰坦表面,温度是 93.65(+-) 0.25 K ,而且压力是 1,467(+-) 1 hPa 。
Re: 泰坦研究出了新成果
An overview of the descent and landing of the Huygens probe on TitanJean-Pierre Lebreton(1), Olivier Witasse(1), Claudio Sollazzo(3), Thierry Blancquaert(2), Patrice Couzin(4), Anne-Marie Schipper(4), Jeremy B. Jones(5), Dennis L. Matson(5), Leonid I. Gurvits(6), David H. Atkinson(7), Bobby Kazeminejad(8) and Miguel Pérez-Ayúcar(1)
Abstract
Titan, Saturn's largest moon, is the only Solar System planetary body other than Earth with a thick nitrogen atmosphere. The Voyager spacecraft confirmed that methane was the second-most abundant atmospheric constituent in Titan's atmosphere, and revealed a rich organic chemistry, but its cameras could not see through the thick organic haze. After a seven-year interplanetary journey on board the Cassini orbiter, the Huygens probe was released on 25 December 2004. It reached the upper layer of Titan's atmosphere on 14 January and landed softly after a parachute descent of almost 2.5 hours. Here we report an overview of the Huygens mission, which enabled studies of the atmosphere and surface, including in situ sampling of the organic chemistry, and revealed an Earth-like landscape. The probe descended over the boundary between a bright icy terrain eroded by fluvial activity—probably due to methane—and a darker area that looked like a river- or lake-bed. Post-landing images showed centimetre-sized surface details.
1. Research and Scientific Support Department,
2. Scientific Project Department, ESA Science Directorate, ESTEC, 2200 AG, Noordwijk, the Netherlands
3. ESA Operations Directorate, ESOC, 64293 Darmstadt, Germany
4. Alcatel Alenia Space, BP 99, F-06156, Cannes-La Bocca, France
5. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
6. Joint Institute for VLBI in Europe, PO Box 2, 7990 AA Dwingeloo, The Netherlands
7. University of Idaho, Department of Electrical and Computer Engineering, Moscow, Idaho 83844-1023, USA
8. Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria
Correspondence to: Jean-Pierre Lebreton1 Correspondence and requests for materials should be addressed to J.-P.L. (Email: jean-pierre.lebreton@esa.int).
惠更斯探测泰坦的降落和登陆概述
Jean - Pierre Lebreton(1 ) Olivier Witasse (1);( 3 ) Claudio Sollazzo ( 2 ) Thierry Blancquaert ( 4 ) Patrice Couzin ( 4 ) Anne- Marie Schipper ( 5 ) Jeremy B. Jones( 5 ) Dennis L. Matson ( 6 )Leonid I. Gurvits , David H. Atkinson ( 7 ), Bobby Kazeminejad ( 8 )和 Miguel P é rez- Ayúcar( 1 )
摘要
泰坦 , 土星最大的卫星,是太阳系地球之外的唯一具有厚的氮大气层的行星。 航行者太空船确认甲烷是泰坦的大气第二丰富的大气成份, 这展示了一个复杂的有机化学实例,但是航行者的照相机不可以看穿厚的有机薄雾。 在经历了七年的行星间的旅程之后在 卡西尼飞船上的惠更斯 探测器 于2004 年十二月 25 日被投出。它在一月 14 日经过了泰坦的大气层并使用降落伞降落软着陆,约耗时 2.5个小时。 这里概述了惠更斯 的任务完成情况, 能够进行大气和表面的研究, situ包括 有机化学的样品抽取, 最终显示了一片像地球一样的风景。 探测器最终降在一个看起来像一条河一样的比较黑暗的区域(或许是甲烷)和侵蚀的明亮冰地带(或湖床)之间的区域。 拼接 登陆图像展现了以厘米为单位评估的表面细节。
The abundances of constituents of Titan’s atmosphere from
The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probeH. B. Niemann(1), S. K. Atreya(2), S. J. Bauer(3), G. R. Carignan(2), J. E. Demick(1), R. L. Frost(7), D. Gautier(4), J. A. Haberman(1), D. N. Harpold(1), D. M. Hunten(5), G. Israel(6), J. I. Lunine(5), W. T. Kasprzak(1), T. C. Owen(8), M. Paulkovich(1), F. Raulin(9), E. Raaen(1) and S. H. Way(1)
Abstract
Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species (including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial 36Ar, and the radiogenic isotope 40Ar, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.
1. National Aeronautics and Space Administration, Greenbelt, Maryland 20771, USA
2. University of Michigan, Ann Arbor, Michigan 48109-2143, USA
3. Institute for Meteorology and Geophysics, University of Graz, A-8010 Graz, Austria
4. LESIA, Observatoire de Paris-Meudon, F-92195 Meudon Cedex, France
5. Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85716, USA
6. Service d'Aéronomie du CNRS, F-91371 Verrières le Buisson Cedex, France
7. University of Alabama, CMC, 817 22nd Street South, Birmingham, Alabama 35205, USA
8. University of Hawaii, Honolulu, Hawaii 96822, USA
9. Laboratoire Interuniversitaire des Systèmes Atmosphériques, Université Paris 12 et Paris 7, Avenue du Général de Gaulle, F-94010 Creteil Cedex, France
Correspondence to: H. B. Niemann1 Correspondence and requests for materials should be addressed to H.B.N. (Email: Hasso.B.Niemann@nasa.gov).
惠更斯 探测器上的 GCMS 工具探知的泰坦大气成份的丰度
(1 ) H. B. Niemann (2 ) S. K. Atreya ( 3 ) S. J. Bauer ( 2 ) G. R. Carignan ( 1 ) J. E. Demick (7)R. L. Frost ( 4 ) D. Gautier ( 1 ) J. A. Haberman ( 1 ) D. N. Harpold (5),D. M. Hunten ,G. Israel( 6 ),J. I. Lunine ( 5 ),W. T. Kasprzak ( 1 ),T. C. Owen ( 8 ),M. Paulkovich ( 1 ),F. Raulin ( 9 ),E. Raaen ( 1 )和 S. H. Way( 1 )
摘要
来自地球的遥远探测器, 航行者和 卡西尼 太空船,探索土星最大的卫星,保持迷雾的泰坦。 最让人迷惑的方面有它的大气分子中氮和甲烷的起源 , 甲烷面对光分解的迅速破坏 被哪一机制所维护。 从 卡西尼 太空船被发射的 惠更斯 探测器,首先直接观察了卫星的表面和低层的大气。 我们的报告直接采用 大气套色测量分光计 (GCMS) 的集成资料, 包括成份, 同位素 比率和 可追踪痕迹物质的高精度计量( 包括有机化合物)。 确认大气主要的成份是氮和甲烷。 惰性气体只发现了氩。 氩包括原始的 36Ar, 和由放射能产生的同位素 40Ar,为研究泰坦的 除气作用 的历史提供一个重要的证据。在表面的测量中发现可追踪痕迹有机物, 包括氰和乙烷。
Rain, winds and haze during the Huygens probe’s descent to
Rain, winds and haze during the Huygens probe's descent to Titan's surfaceM. G. Tomasko(1), B. Archinal(2), T. Becker(2), B. Bézard(3), M. Bushroe(1), M. Combes(3), D. Cook(2), A. Coustenis(3), C. de Bergh(3), L. E. Dafoe(1), L. Doose(1), S. Douté(4), A. Eibl(1), S. Engel(1), F. Gliem(5), B. Grieger(6), K. Holso(1), E. Howington-Kraus(2), E. Karkoschka(1), H. U. Keller(6), R. Kirk(2), R. Kramm(6), M. Küppers(6), P. Lanagan(1), E. Lellouch(3), M. Lemmon(7), J. Lunine(1,8), E. McFarlane(1), J. Moores(1), G. M. Prout(1), B. Rizk(1), M. Rosiek(2), P. Rueffer(5), S. E. Schröder(6), B. Schmitt(4), C. See(1), P. Smith(1), L. Soderblom(2), N. Thomas(9) and R. West(10)
Abstract
The irreversible conversion of methane into higher hydrocarbons in Titan's stratosphere implies a surface or subsurface methane reservoir. Recent measurements from the cameras aboard the Cassini orbiter fail to see a global reservoir, but the methane and smog in Titan's atmosphere impedes the search for hydrocarbons on the surface. Here we report spectra and high-resolution images obtained by the Huygens Probe Descent Imager/Spectral Radiometer instrument in Titan's atmosphere. Although these images do not show liquid hydrocarbon pools on the surface, they do reveal the traces of once flowing liquid. Surprisingly like Earth, the brighter highland regions show complex systems draining into flat, dark lowlands. Images taken after landing are of a dry riverbed. The infrared reflectance spectrum measured for the surface is unlike any other in the Solar System; there is a red slope in the optical range that is consistent with an organic material such as tholins, and absorption from water ice is seen. However, a blue slope in the near-infrared suggests another, unknown constituent. The number density of haze particles increases by a factor of just a few from an altitude of 150 km to the surface, with no clear space below the tropopause. The methane relative humidity near the surface is 50 per cent.
1. Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd, Tucson, Arizona 85721-0092, USA
2. US Geological Survey, Astrogeology, 2225 N. Gemini Drive, Flagstaff, Arizona 86001, USA
3. LESIA, Observatoire de Paris, 5 place Janssen, 92195 Meudon, France
4. Laboratoire de Planétologie de Grenoble, CNRS-UJF, BP 53, 38041 Grenoble, France
5. Technical University of Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig, Germany
6. Max Planck Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau, Germany
7. Department of Physics, Texas A&M University, College Station, Texas 77843-3150, USA
8. Istituto Nazionale di Astrofisica — Istituto di Fisica dello Spazio Interplanetario (INAF-IFSI ARTOV), Via del Cavaliere, 100, 00133 Roma, Italia
9. Department of Physics, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland
10. Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91109, USA
Correspondence to: C. See1 Correspondence and requests for materials should be addressed to C.S. (Email: csee@lpl.arizona.edu).
惠更斯 探测器降落期间在泰坦表面的雨,风和薄雾
M. G. Tomasko ( 1 ),B. Archinal ( 2 ),T. Becker( 2 ),B. B é zard ( 3 ),M. Bushroe ( 1 ),M. Combes ( 3 ),D. Cook( 2 ),A. Coustenis ( 3 ), (3 ) C.de Bergh , (1 ) L. E. Dafoe ,( 1 ) L. Doose ,( 4 ) S. Dout é,( 1 ) A. Eibl ,( 1 ) S. Engel ,( 5 ) F. Gliem ,( 6 ) B. Grieger ,(1 ) K. Holso ,E. Howington-Kraus ( 2 ),E. Karkoschka ( 1 ),H. U. Keller ( 6 ),R. Kirk( 2 ),R. Kramm ( 6 ),M. K ü ppers ( 6 ),P. Lanagan ( 1 ),E. Lellouch ( 3 ),M. Lemmon ( 7 ),J. Lunine ( 1,8 ),E. McFarlane ( 1 ),J. Moores( 1 ),G. M. Prout ( 1 ),B. Rizk ( 1 ),M. Rosiek ( 2 ),P. Rueffer ( 5 ),S. E. Schr?der ( 6 ),B. Schmitt ( 4 ),C. See( 1 ),P. Smith( 1 ),L. Soderblom ( 2 ),N. Thomas( 9 )和 R. West( 10 )
摘要
在泰坦的同温层中的甲烷到高分子碳氢化合物的不可还原的转变暗示地面或 地下存在着 甲烷水库。搭乘 卡西尼 人造飞船的照相机最近的测量无法看见一个全球的海洋,这是因为在泰坦大气中的甲烷和烟雾妨碍在地面上搜寻碳氢化合物。报告中诉说了光谱 和被 惠更斯 探测器的照相制图/频谱辐射计工具在泰坦的大气降落过程中获得的高清晰图像。 虽然这些图像上没有直接 展现地面上的液体碳氢化合物湖,但是他们确实显示了一次液体流动的痕迹。 图像令人惊讶的与地球相似,比较明亮的区域我们认为是高地展现复杂的沟渠系统,他们流向黑暗区域我们认为是低地。 我们认为登陆地点的图像是一个干的河床。 通过为表面测量光谱我们知道泰坦红外线的反射比不象太阳系中所有已知的;在可见光光学范围内有红色偏移辨明有如同 tholins 一样 的有机材料,而且也有光谱表示冰的吸收。 然而,出现了一个蓝色的偏移倾斜在靠近 红外线的部分暗示了另外的,未知的成份。 薄雾粒子数字和密度从 150 km 的高度到表面逐步增加, 并且没有在对流顶层下面的空间明显改变规律。 甲烷靠近地面的地方湿度是50% 。
The vertical profile of winds on Titan
The vertical profile of winds on TitanM. K. Bird(1), M. Allison(2), S. W. Asmar(3), D. H. Atkinson(4), I. M. Avruch(5), R. Dutta-Roy(1), Y. Dzierma(1), P. Edenhofer(6), W. M. Folkner(3), L. I. Gurvits(5), D. V. Johnston(3), D. Plettemeier(7), S. V. Pogrebenko(5), R. A. Preston(3) and G. L. Tyler(8)
One of Titan's most intriguing attributes is its copious but featureless atmosphere. The Voyager 1 fly-by and occultation in 1980 provided the first radial survey of Titan's atmospheric pressure and temperature(1, 2) and evidence for the presence of strong zonal winds(3). It was realized that the motion of an atmospheric probe could be used to study the winds, which led to the inclusion of the Doppler Wind Experiment(4) on the Huygens probe(5). Here we report a high resolution vertical profile of Titan's winds, with an estimated accuracy of better than 1 m s-1. The zonal winds were prograde during most of the atmospheric descent, providing in situ confirmation of superrotation on Titan. A layer with surprisingly slow wind, where the velocity decreased to near zero, was detected at altitudes between 60 and 100 km. Generally weak winds ( 1 m s-1) were seen in the lowest 5 km of descent.
1. Radioastronomisches Institut, Universität Bonn, Auf dem Hügel 71, 53125 Bonn, Germany
2. NASA Goddard Institute for Space Studies, 2880 Broadway, New York, New York 10025, USA
3. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA
4. Department of Electrical & Computer Engineering, University of Idaho, Moscow, Idaho 83844-1023, USA
5. Joint Institute for VLBI in Europe, PO Box 2, 7990 AA Dwingeloo, The Netherlands
6. Institut für HF-Technik, Universität Bochum, 44780 Bochum, Germany
7. Elektrotechnisches Institut, Technische Universität Dresden, 01062 Dresden, Germany
8. Center for Radar Astronomy, Stanford University, Stanford, California 94305, USA
Correspondence to: M. K. Bird1 Correspondence and requests for materials should be addressed to M.K.B. (Email: mbird@astro.uni-bonn.de).
以垂直位置为索引描述泰坦的风
(1 ) M. K. Bird,( 2 ) M. Allison ,( 3 ) S. W. Asmar ,( 4 ) D. H. Atkinson ,( 5 ) I. M. Avruch ,( 1 ) R. Dutta-Roy ,( 1 ) Y. Dzierma ,( 6 ) P. Edenhofer ,(3 ) W. M. Folkner ,L. I. Gurvits ( 5 ),D. V. Johnston ( 3 ),D. Plettemeier ( 7 ),S. V. Pogrebenko ( 5 ),R. A. Preston ( 3 )和 G. L. Tyler ( 8 )
泰坦最迷人的属性之一是它的厚重的但却无色的大气层。 航行者 1 飞船在1980年 提供了第一份以前未探测的泰坦大气的压力和温度( 1 , 2 )的证据,使用可见光调查出现的强壮的风带( 3 )。 通用大气探测的结果可以用来了解风, 在 惠更斯探测器 ( 5 )上的多普勒风实验器( 4 )包含了这些探测。在我们报告里有一个清晰的泰坦的风的垂直描述,估计的精度好于 1 m * s-1 . 带状的风在大部份大气降落期间探测出是 与天体作同方向运行(或旋转)的 ,这个结果被 非常规的 对泰坦的 situ 探测中发现。在高度在 60 和 100 km 之间的层发现了 令人惊讶的慢风 , 那里风速度减少到接近零 。 在降落的最低 5 km发现了通常的弱风 (1 m * s-1)。
Complex organic matter in Titan’s atmospheric aerosols from
Complex organic matter in Titan's atmospheric aerosols from in situ pyrolysis and analysisG. Israël(1), C. Szopa1, F. Raulin(2), M. Cabane(1), H. B. Niemann(3), S. K. Atreya(4), S. J. Bauer(5), J.-F. Brun(1), E. Chassefière(1), P. Coll(2), E. Condé(6), D. Coscia(2), A. Hauchecorne(1), P. Millian(7), M.-J. Nguyen(2), T. Owen(8), W. Riedler(9), R. E. Samuelson(10), J.-M. Siguier(7), M. Steller(11), R. Sternberg(2) and C. Vidal-Madjar(12)
Aerosols in Titan's atmosphere play an important role in determining its thermal structure(1, 2, 3). They also serve as sinks for organic vapours(4) and can act as condensation nuclei for the formation of clouds(5, 6), where the condensation efficiency will depend on the chemical composition of the aerosols(5, 7). So far, however, no direct information has been available on the chemical composition of these particles. Here we report an in situ chemical analysis of Titan's aerosols by pyrolysis at 600 °C. Ammonia (NH3) and hydrogen cyanide (HCN) have been identified as the main pyrolysis products. This clearly shows that the aerosol particles include a solid organic refractory core. NH3 and HCN are gaseous chemical fingerprints of the complex organics that constitute this core, and their presence demonstrates that carbon and nitrogen are in the aerosols.
1. Service d'Aéronomie UMR 7620 CNRS, ISPL, Universities Paris 6 and Versailles-Saint Quentin, Verrières-le-Buisson, F 91371, France
2. Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR 7583 CNRS, Universities Paris 12 and Paris 7, Créteil, F 94010, France
3. NASA Goddard Space Flight Centre, Greenbelt, Maryland 20771, USA
4. University of Michigan, Ann Arbor , Michigan 48109, USA
5. Institute for Meteorology and Geophysics, University of Graz, Graz A 8010, Austria
6. Centre National d'Etudes Spatiales (CNES), Toulouse, F 31401, France
7. Office National d'Etudes et de Recherches Aérospatiales, Toulouse, F 31055, France
8. Institute for Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
9. Space Research Institute, Graz A 8010, Austria
10. Department of Astronomy, University of Maryland, College Park, Maryland 20742, USA
11. Institut für Weltraumforschung, Österreichische Akademie der Wissenschaften, Graz A 8042, Austria
12. Laboratoire de Recherche sur les Polymères, UMR 7581 CNRS, Thiais, F 94320, France
Correspondence to: G. Israël1 Correspondence and requests for materials should be addressed to G.I. (Email: Guy.israel@aerov.jussieu.fr).
从 situ 热分解和分析中研究泰坦大气雾里的合成有机物
G. Israël(1), C. Szopa1 l(1), (2 ) F. Raulin ,( 1 ) M. Cabane ,( 3 ) H. B. Niemann ,( 4 ) S. K. Atreya ,( 5 ) S. J. Bauer (6),J.- F. Brun (1),E. Chassefi ère (1 ),( 2 ) P. Coll ,(6 ) E. Cond é,D. Coscia ( 2 ),A. Hauchecorne ( 1 ),P. Millian ( 7 ),M.-J. Nguyen ( 2 ),T. Owen ( 8 ),W. Riedler ( 9 ),R. E. Samuelson ( 10 ),J.-M. Siguier ( 7 ),M. Steller ( 11 ),R. Sternberg ( 2 )和 C. Vidal-Madjar ( 12 )
泰坦大气的雾状物质在泰坦的热结构( 1,2 , 3 )方面扮演重要角色。 他们也为有机物的蒸汽( 4 )提供洗涤槽和为云( 5,6) 的形成 提供 凝结核心, 凝结效率将会依赖雾状物质( 5,7) 的化学作用。然而到现在为止, 没有得到这些粒子的化学作用的直接的数据。我们通过在 situ 化学仪器中以 600 ° C 的热分解分析 确认泰坦的雾状物质 ,主要的热分解产品 有 氨 (NH3) 和氢 氰化物(HCN) 。 这清楚地表明了雾状物质 粒子包括一个坚硬的有机稳定的核心。 NH3 和 HCN 这些气体的化学物质说明复杂的有机物构成这个核心,他们也说明了雾状物质中包括碳,氮。
A soft solid surface on Titan as revealed by the Huygens
A soft solid surface on Titan as revealed by the Huygens Surface Science PackageJohn C. Zarnecki(1), Mark R. Leese(1), Brijen Hathi(1), Andrew J. Ball(1), Axel Hagermann(1), Martin C. Towner(1), Ralph D. Lorenz(2), J. Anthony M. McDonnell(1), Simon F. Green(1), Manish R. Patel(1), Timothy J. Ringrose(1), Philip D. Rosenberg(1), Karl R. Atkinson(1), Mark D. Paton(1), Marek Banaszkiewicz(3), Benton C. Clark(4), Francesca Ferri(5), Marcello Fulchignoni(6), Nadeem A. L. Ghafoor(7), Günter Kargl(8), Håkan Svedhem(9), John Delderfield(10), Manuel Grande(10), David J. Parker(10), Peter G. Challenor(11) and John E. Geake(12,13)
The surface of Saturn's largest satellite—Titan—is largely obscured by an optically thick atmospheric haze, and so its nature has been the subject of considerable speculation and discussion(1). The Huygens probe entered Titan's atmosphere on 14 January 2005 and descended to the surface using a parachute system(2). Here we report measurements made just above and on the surface of Titan by the Huygens Surface Science Package(3, 4). Acoustic sounding over the last 90 m above the surface reveals a relatively smooth, but not completely flat, surface surrounding the landing site. Penetrometry and accelerometry measurements during the probe impact event reveal that the surface was neither hard (like solid ice) nor very compressible (like a blanket of fluffy aerosol); rather, the Huygens probe landed on a relatively soft solid surface whose properties are analogous to wet clay, lightly packed snow and wet or dry sand. The probe settled gradually by a few millimetres after landing.
1. The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
2. University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona 85721, USA
3. Polish Academy of Sciences, Ul Bartycka 18 A, Warszawa, Pl-00716, Poland
4. Lockheed Martin Astronautics, PO Box 179, Denver , Colorado 80201, USA
5. CISAS G. Colombo, University of Padova, Via Venezia 15, 35131 Padova, Italy
6. LESIA, Paris Observatory, 5 Place Janssen, 92195, Meudon, France
7. MD Robotics, 9445 Airport Road, Brampton, Ontario, L6S 4J3, Canada
8. Space Research Institute, Austrian Academy of Sciences, Schmiedlstra e 6, A-8042 Graz-Messendorf, Austria
9. ESA/ESTEC, Research and Scientific Support Department, Postbus 299, 2200 AG, Noordwijk, The Netherlands
10. Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK
11. Southampton Oceanography Centre, Empress Dock, Southampton SO14 3ZH, UK
12. Physics Department, UMIST, Manchester M60 1QD, UK
13. ‡Deceased
Correspondence to: John C. Zarnecki1 Correspondence and requests for materials should be addressed to J.C.Z. (Email: J.C.Zarnecki@open.ac.uk).
惠更斯 表面科学探测器 显示泰坦的表面被一种软的固体包裹
(1 )John C. Zarnecki , (1 )Mark R. Leese ,( 1 ) Brijen Hathi ,( 1 )Andrew J. Ball,( 1 ) Axel Hagermann ,( 1 )Martin C. Towner,( 2 ) Ralph D. Lorenz ,( 1 ) J. Anthony M. McDonnell ,Simon F.(1 )Green,(1 ) Manish R. Patel ,Timothy J. Ringrose ( 1 ), Philip D. Rosenberg ( 1 ),Karl R. Atkinson ( 1 ), Mark D. Paton ( 1 ),Marek Banaszkiewicz ( 3 ),Benton C. Clark ( 4 ),Francesca Ferri( 5 ),Marcello Fulchignoni ( 6 ),Nadeem A. L. Ghafoor ( 7 ),G ü nter Kargl ( 8 ),Håkan Svedhem ( 9 ), John Delderfield ( 10 ),Manuel Grande ( 10 ), David J. Parker( 10 ), Peter G. Challenor ( 11 )和John E. Geake ( 12,13 )
土星最大的卫星—泰坦—的表面大量地被一片眼睛所看不透的厚的阴暗的雾状的大气层所阻挡,因此它的自然环境是推测和讨论( 1 )的主题。 惠更斯 探测器在 2005 年一月 14 日进入了泰坦的大气并且使用降落伞系统( 2 )在她的表面降落。这里我们报告 惠更斯表面科学探测器 在泰坦表面的测量结果 ( 3,4 )。在表面上的 90 m 的震动共呜探测显示 表面登陆位置的环境 相对地光滑,但是不是完全地平坦。介子 和 加速过滤器 测量发现 探测器在碰撞事件发生 期间 表面既不是硬的 (类同固体冰) 也不是可压缩的 (雾状颗粒像毛绒绒的一条毛毯);我们宁可相信, 惠更斯探测器 是在 类似湿地的软固体表面上登陆的,如一堆含雪的水或干沙子。 探测器在登陆之后有一些毫米级的运动然后逐渐地安定了下来。 谁不晕? god!
“惠更斯”号探测器部分揭开土卫六大气之谜(中文类似报道)
新华网伦敦12月1日电欧洲航天局科学家在1日出版的《自然》杂志上报告说,“惠更斯”号探测器采集到的数据表明,土星最大卫星土卫六的大气层结构与地球极为相似,但比地球大气构成更复杂,层次更多。今年1月14日,“惠更斯”号探测器携带6部测量仪器,“勇闯”土卫六大气层。在两个多小时的穿越过程中,该探测器采集到大量有用数据。这些数据表明,土卫六的大气层与地球大气层类似,主要成分是氮,但比地球大气浓度高10倍。土卫六的大气层也有对流层和同温层,两层之间有明显的“逆温”作为分界。在土卫六表面以上500公里的位置,有更多这种作为气层间分界的“逆温”存在。
科学家还发现,土卫六的同温层位于其表面以上200到250公里之间。在土卫六表面以上20公里的位置,有一层较薄的雾气。在这层雾气和同温层之间,土卫六的风速变化极其复杂。在土卫六表面以上100公里的位置,风速迅速降低;在表面以上80公里的位置,风速骤减为零;而到距离土卫六表面更近的位置时,风速又增加到每小时140公里。科学家目前对风速的这种变化还没有合理的解释。
在抵达距离土卫六表面再近的位置时,“惠更斯”号曾探测到连续的电流活动,很可能是大气层中的闪电。这些电流的频率大约为36赫兹,科学家推测这种闪电是土卫六的甲烷云产生的。
“惠更斯”号1997年10月由“卡西尼”飞船携带发射升空,经过7年约35亿公里的飞行后进入土星轨道,并于2004年12月25日与飞船分离。 看到E文便头痛,期待大家尽快翻译完。 算翻译完了
页:
[1]