Maxim DL 控制拍摄流程

人深空摄影这个巨坑即将满一年,受到诸多同好的指导和帮助,感激不尽。不断学习中也慢慢掌握了一些技巧,其中通过 Maxim DL 控制整个拍摄系统对我帮助很大,拍摄变得轻松快捷不少。最近有不少同好表示对 Maxim DL 操作不太熟悉,也没有找到很完整的教程,所以我产生这个想法,把我学到的技巧和我的操作流程描述一下,也许对大家有些帮助。

Maxim DL(以下简称 MDL)是一款功能强大完整的天文摄影控制及图像处理软件。本文主要介绍一下 MDL 的系统控制功能及我自己的操作流程,给同好们做一个参考。所有拍摄过程中需要的动作均可通过 MDL 完成,无需手柄控制或者多星校准。有些描述可能比较繁琐,有些内容页与其他优秀教程有重叠,请自行取舍。希望本文对大家有所帮助。

yzhzhang

* 版权归作者所有,如需转载请联系作者,谢谢!

目录

软件准备	2
设备连接及准备	
赤道仪:	
电调焦:	
相机及滤镜轮:	
GoTo,定位及调整构图	
对焦	10
导星	11
拍摄及自动保存	12
注释:	13
参考文献:	13

软件准备

Maxim DL Pro 5 (我用的是 V5.23)
ASCOM 平台(支持大部分赤道仪控制,列表见[1],介绍及下载见[2])
赤道仪驱动(下载见[3])
相机驱动(注一)
电调焦 ASCOM 驱动(下载见[4])
GSC 星体库(下载及使用见[5])

设备连接及准备

设备架设完毕,做好平衡,对好极轴,将赤道仪手动回归 park position (镜筒平行赤经轴,重锤杆竖直向下),锁紧赤经,赤纬轴。线缆全部正确连接之后,首先需要在设备管理器中确认各个串口的端口号,用于在 MDL 中指定 (注二,注三)。接下来就可以软件连接各个设备。

赤道仪:

1,打开 MDL,点击 Toggle Observatory Control(图一中红色箭头处),打开 Observatory 窗口(图一蓝色窗口)。

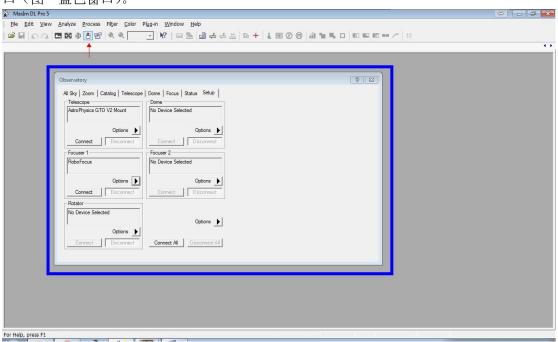


Figure 1

2,在 Telescope 窗口下点 Options 右侧的黑色三角(图二红框),在弹出的下拉菜单(图二 蓝框)中选择合适的赤道仪,点右侧 Properties。

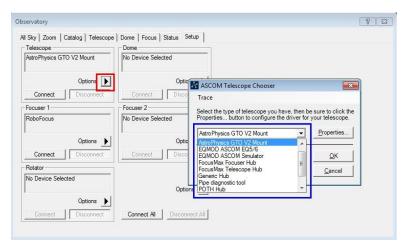


Figure 2

3,接下来弹出的窗口根据不同的赤道仪可能有区别,最基本的设置是要填写 COM 口的信息(图三绿框)(注二)。正确填写 COM 口端号之后点击两次 OK 返回 Observatory 页面。点击 Telescope 框下的 connect 按钮(图四红框),connect 按钮变灰,右侧 disconnect 按钮变成可选(图四蓝框),说明赤道仪已连接成功。

Figure 3

Figure 4

电调焦:

4,类似第二步,在 Focuser 1 窗口下点击 options 右侧黑色三角(图五红框),下拉菜单中选中合适的调焦,点右侧 Properties 进行设置。

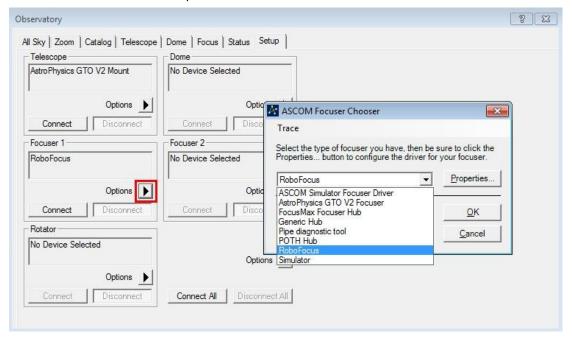


Figure 5

5,在弹出窗口中设置 COM \square (注五),之后点两次 ok 退回图四窗口,点 connect 进行连接。

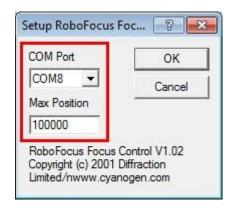


Figure 6

相机及滤镜轮:

6,点击 Toggle Camera Control(图七红箭头处),弹出相机设置窗口。一般默认 camera 1 是主拍摄相机,camera 2 是导星相机。点击图七绿色箭头处 setup camera 设置主相机。在弹出窗口(图七绿框)中选择对应的相机,点 ok(注六)。之后 camera 2 中对导星相机进行类似设置。

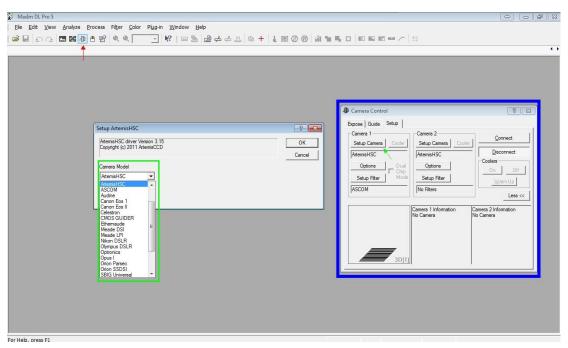


Figure 7

7,相机设置好之后,点击图八红色箭头处设置滤镜轮。在弹出窗口下拉菜单(图八红框)中选择对应的滤镜轮,在蓝框中填入各个位置对应的滤镜名称,点击 ok 完成设置。回到 camera control 窗口点击 connect(图八绿框),完成连接相机。至此设备连接完成。

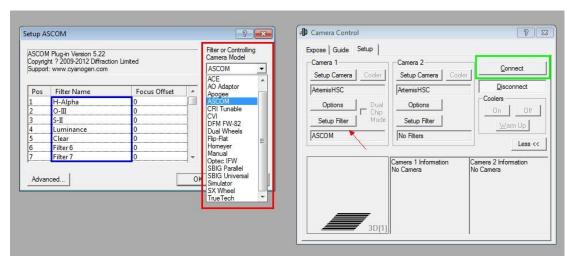


Figure 8

8,接下来我会打开制冷,点图九红色箭头处,在弹出窗口中蓝色箭头处设置制冷温度,点 ok,在绿色箭头处点 on 打开制冷。

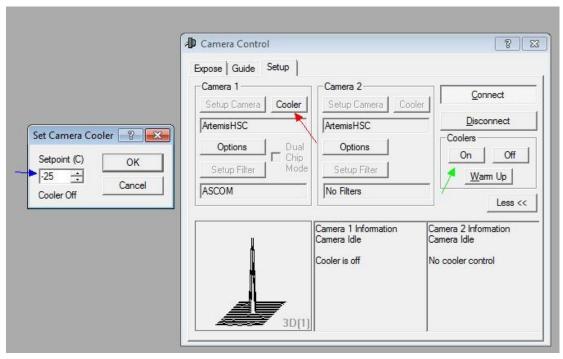


Figure 9

10,之后我一般会试曝光一张,在 camera control 窗口中,选择 expose 标签(图十红框),确保红色箭头处选择 single 和 camera 1,图十绿框中选择 L 滤镜,图十蓝框中选择曝光时间,点击图十蓝色箭头处 start 进行曝光。根据曝光可以进行粗略调焦。

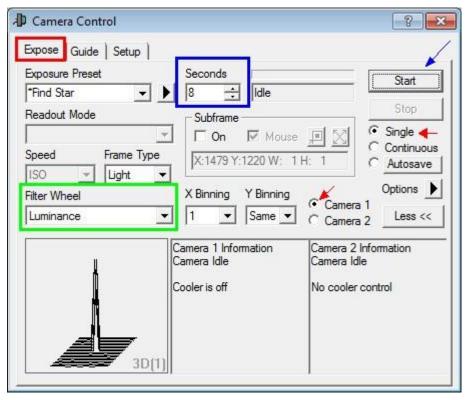


Figure 10

GoTo,定位及调整构图

11,接下来做 GoTo 移动赤道仪工作,这里以加州星云为例。在 Observatory 窗口中选择 Catalog 标签(图 11 红色箭头处),在红框位置中选择目标类别(Deep Space,深空天体)和目标编号(NGC 1499),点绿色箭头处的 search,目标信息会出现下方绿框中。点击蓝色箭头处的 Go To,赤道仪就会开始移动到该目标位置。

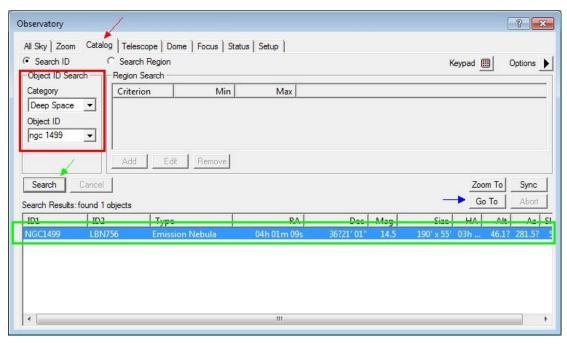


Figure 11

12,移动停止之后,取决于你的极轴准确度和赤道仪的 point accuracy,望远镜会大概指向目标方位,但是不一定准确指向目标的坐标。接下来做 Pinpoint 解析(以下简称 PP),定位当前赤道仪位置。有关 PP 的具体操作可以参阅 Northwolfwu 同好的详细教程[5],这里就介绍一下具体操作流程。L 通道 8~10 秒曝光一张照片(类似第 10 步,图 12 中的图片是长时间曝光,仅是示范作用。实际曝光后只会是一些星点,但足够用来做 PP 解析),点击MDL 上端的 Analyze 标签(图 12 红色箭头),点击第一个选项 Pinpoint Astrometry。在弹出的窗口中,图 12 红框处指定 GSC 星表路径[5],图 12 绿框处勾选 FITS SCALE 和 FITS CENTER,然后点击蓝色箭头处 Process。一般情况下解析会非常快,成功之后图 12 蓝框中会显示当前望远镜赤经赤纬坐标,选择角度,焦距长度以及 pixel scale。

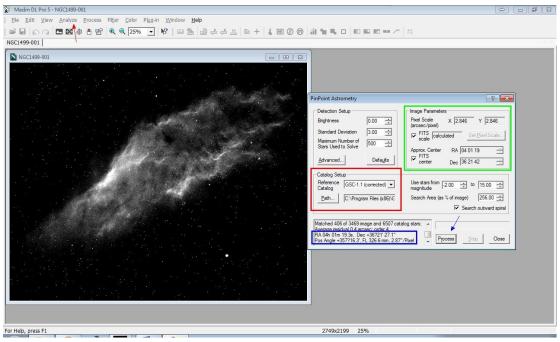


Figure 12

13,获得当前赤经赤纬坐标后,回到 Observatory 菜单中的 telescope 标签。这时红框位置中会显示你 GoTo 时目标的**设定坐标,而不是望远镜当前的实际坐标**(图 13 中坐标只是为了举例,并不正确)。通过刚才第 12 步的 pp 解析,你获取了望远镜的实际坐标,所以通过点击蓝色箭头处的 sync 按钮,并选中蓝框中的 Solved position,点击 OK 后,红框中会变成 pp 解析后的坐标,代表赤道仪同步到了正确的当前位置。

Figure 13

14, 重复第 **11-13** 步提高指向精度。一般重复一次至两次就足够精确了。另外如果你不需要目标在图像正中间的话,可以事先查好你需要的构图形态以及构图后的中心坐标(注

七),在图 **13** 中 Target Coordinates 中输入赤经和赤纬坐标,**并且选择 J2000**,点 Go To,这样赤道仪就会运行到你想要的构图位置了。

对焦

15,利用 MDL 和电调焦来调焦还是挺方便和精确的。对焦前,先在 camera control 中选择合适的滤镜。然后在 Observatory 窗口中点击 Focus 标签(图 14 红色箭头)。图 14 中,红框中显示当前调焦座所在位置,蓝框中可以命令调焦座移出或者移进指定距离,紫框中可以命令调焦座移动到指定位置。

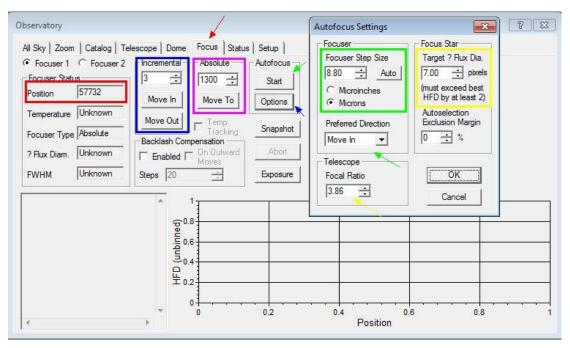


Figure 14

- 15, MDL 也有自动对焦功能。在自动对焦之前,需要做手动测量,计算出每一"步"所代表的调焦座实际移动距离。做法可以是在蓝框中命令调焦座移动 1000 步,用尺子测出移动距离,然后除以 1000。该数值不用非常非常精确。
- 16,确定这个数值之后,点击图 14 蓝色箭头 Options 进行自动对焦设置。在弹出的窗口中,绿框中填入刚刚测得的数值,注意绿框中的单位是微英寸或者微米,要选择你正确的单位。绿箭头处选择最后合焦时的调焦座移动方向。黄框中指定合焦目标。之后点图 15 中红色箭头 Exposure 进行曝光设置,红框中设定曝光长度,对焦视场等等。都设定好之后点 OK,再点绿色箭头处的 Start。开始自动对焦后,图 15 中蓝框区域会自动生成一条 V 型曲线。曲线生成之后,MDL 会自动判别合焦处调焦座位置,并自动移动到该位置,自动对焦完成。

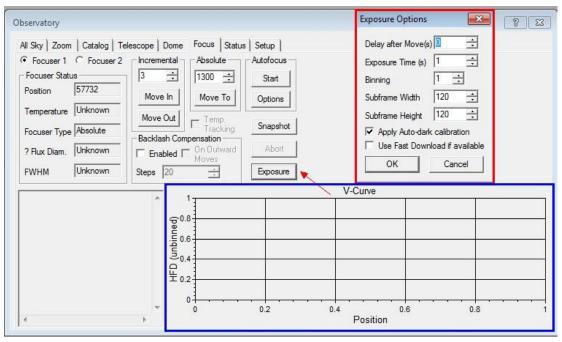


Figure 15

导星

17,接下来做导星设定。回到 camera control 窗口,点击 Guide 标签,点击 Settings,弹出图 16 左侧的窗口。在红框中设定导星校准的时间。在校准过程中,校准星必须在 X 和 Y 轴都移动至少 5 个像素。所以若被导星比较靠近北天极,星点的移动线速度比较慢,可以适当增加红框中的 Cal Time,确保星点移动足够距离。在蓝色箭头处的下拉菜单中选择合适的导星方式。如果通过 ST4 口导星,需选择 Guider Relay。如果通过 ASCOM 导星,选择 ASCOM Direct。

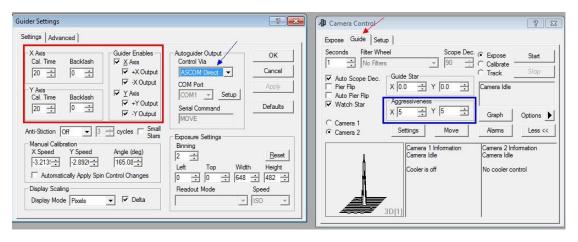


Figure 16

18,设定完毕后点 ok 回到图 17,在红框中选择 Expose,曝光一张照片,鼠标左键照片中的一颗亮星。之后选择红框中的 Calibrate,点 start,星点会朝一个方向移动图 16 中指定的

时间,然后移动回到原先位置;然后朝与之前移动方向垂直的另一方向移动,同样再回到原点。校准完成后星点会在图片上产生一个红色的 L 型轨迹。最后选择红框中的 track 并点 start,导星开始。蓝框中的 Aggressiveness 可以分别控制两轴的矫正强度,如果曲线波动太剧烈,说明纠正命令太频繁,可以适当减小 Aggressiveness。

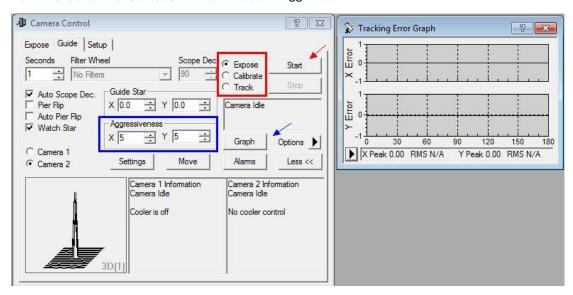
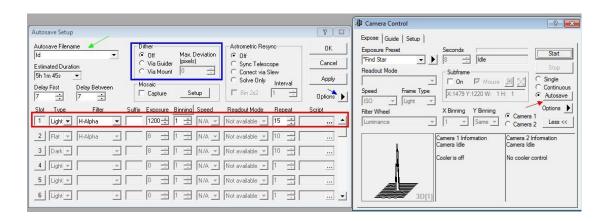



Figure 17

拍摄及自动保存

导星开始之后就可以进行正常曝光了。在 expose 标签中选择图 18 中红色箭头处的 autosave, 弹出左侧窗口。在绿色箭头处输入保存文件名, 红框中输入曝光参数, 如曝光 类型 (亮场, 暗场, 平场等等), 滤镜, 曝光长度, binning, 曝光张数等。蓝框中可以进行 dither 设置 (由导星相机决定,或是由赤道仪决定)。蓝色箭头处点开,可以选择自动保存路径。设定完毕后点 ok, 然后点 start 开始曝光。可以去休息啦!

注释

注一:包括主拍摄相机与导星相机以及滤镜轮,有时需分别下载安装。

注二: USB 转串口线质量一定要好,便宜的经常出现连接问题。

注三:有些 usb hub 供电不足,会导致拍摄相机或者导星相机拍摄时卡死。遇到这情况的

话可以检查一下电脑直连相机,跳过 usb hub,看看能不能解决问题。

注四:一般我也将观测地的经纬度,海拔以及望远镜的口径,焦距等内容都填写上。

注五: max position 似乎并不重要,个人认为这个步数只是相对的。

注六:一些相机需要进一步设置,比如选择 usb 端口等等,按需设置。

注七: MDL 的星图的确是惨不忍睹,我一般不用它来构图。我发现一个非常好的构图网站 [6],可以指定相机和望远镜,指定目标,非常方便的构图并获取中心坐标。可惜的是国内似乎不能直接访问,需要翻墙。。。有兴趣的同好不妨一试。

参考文献

- [1] http://ascom-standards.org/Support/Scopes.htm
- [2] http://ascom-standards.org/
- [3] http://ascom-standards.org/Downloads/ScopeDrivers.htm
- [4] http://ascom-standards.org/Downloads/FocuserDrivers.htm
- [5] "Maxim DL 导星分析图片和精确构图攻略" http://www.astronomy.com.cn/bbs/thread-181699-1-1.html
- [6] http://www.blackwaterskies.co.uk/p/imagingtoolbox.html