本帖最后由 protoplast 于 2009-6-9 09:34 编辑
最新一期Nature对显微镜的技术革新做了一期特刊。本文为翻译其中的一篇。鼓励同好能够参与翻译,这有助于加深对于显微镜的了解,同时可以服务大家。http://www.nature.com/news/specials/microscopy/index.html
Microscopes are biologists' window to life — and advances in microscopy over recent years are revealing some breathtaking new views. Here Nature profiles five microscopes that are changing the ways that researchers see the world, and examines the challenges involved in collecting and interpreting the microscopic image.Now you see it….
显微镜是生物学家观察生命的窗口。显微镜技术的每次革新都给我们带来新的观念。《自然》杂志为此特别总结了显微镜技术的变革历程:列举了5种不同显微镜是如何影响我们观察微观世界的;并描述了关于图像信息收集和诠释方面的进展。你将看到……
From water crystals to exquisitely branched neurons, here we show some views of microscopic life that turned heads over 300 years ago and some that are doing the same today.
从结晶的水到具复杂分支的神经元,我们为大家展现了过去300年间在显微镜下看到的世界,其中的一些技术仍在为我们服务。
摘自罗伯特.胡克1665年的《显微图谱》, 不同形状的结晶:Fig2,3雪花 fig4刀片上的冰;fig5石头上的冰;
Of a flea
跳蚤
"The strength and beauty of this small creature, had it no other relation at all to man, would deserve a description," wrote Robert Hooke in his book Micrographia.
胡克在其《显微图谱》中写道:“尽管这个小家伙与人长得如此迥异,但我由衷赞叹其所展现出的力量和美感。”
A new resolution 更高的分辨力
Comparison of human glioblastoma taken with a confocal microscope (left) and stimulated emission depletion microscope (STED, right) which resolves nanometer-scale structures that are smaller than the diffraction limit.
分别用激光共聚焦显微镜(左图)和受激发射损耗显微镜(右图)显示多形性胶质母细胞瘤,STED可以显示纳米尺度的结构,从而超越了传统显微镜的衍射极限。(译者注,传统光学显微镜受衍射的限制,分辨率只能达到波长的一半,约几百微米,STED可以看到几百纳米尺度的结构。STED被science评为2006年十大科技进展。http://www.sciencemag.org/cgi/content/full/314/5807/1850a)
The full circle 三维整体
A snapshot of a zebrafish embryo taken with the single plane illumination microscope (SPIM) roughly 11 hours after fertilization. The two pictures show the two hemispheres of the embryo.
用SPIM(单一平面照射显微镜)观察受精后约11小时的斑马鱼胚胎,两张图分别显示了位于胚胎两极的两个平面。(译者注:所谓单一平面,是指光束形成一个极其薄的面,扫过整个样品。可详见http://www.nature.com/news/2009/090603/full/459630a.html#sheetgraphic)
Microscope on a chip 芯片上的显微镜
The tiny optofluidic microscope does away with lenses and may be mass produced for high-throughput microscopy and microscopy in remote settings.
微小的光流体显微镜由于不需要传统的透镜,可以大规模用于高通量显微镜以及远程设备上。
Look, no lens 看,哪有透镜
The nematode Caenorhabditis elegans captured by the optofluidic microscope (top) and a conventional microscope with a 20x objective (bottom).
瞧一瞧效果
用光流体显微镜(上图)和传统显微镜(下图,20倍物镜)观察线虫
Look, no label 瞧瞧,不用标记
Stimulated Raman scattering microscopy (SRS) captures biological molecules without labels or stains. Clockwise from top left: (1 & 2) Images of plant cell walls reveal the sub-cellular distribution of lignin (green) and cellulose (red); (3) SRS image of a soy drink shows water (blue), protein (red) and oil (green); (4) difference in lipids distinguishes healthy tissue (bottom) from poor tissue
受激拉曼散射显微术可以获得没有标记的生物分子的图像。(译者注:传统的方法需要对特定的分子加入荧光标记,从而可能干扰样品)。顺时针方向:植物细胞壁显示木质素(图1)和纤维素(图2)的分布;图3显示酱油液体中的不同成份:蓝色显示水分子,红色为蛋白,绿色为油;图4显示健康组织(下)与坏组织中脂肪的区别。
The Osaka scope大阪镜
The ultrahigh-voltage electron microscope (UHVEM) at Osaka, Japan, has an electron gun with a 5.7-metre accelerator tube and a maximum 3,500 kiloelectronvolt electron beam. It gives the electron beam enough energy to pass through biological samples thicker than 5 micrometres.
在日本大阪的超高压电子显微镜,拥有一个具5.7米高加速管的电子枪,最大可以产生3500千电子伏特的电子束。产生的电子束具备足够的能量穿过厚度大于5微米的生物样品(译者注:一般生物样品在观察电镜时,需要将样品切成大于100纳米的超薄切片,从而有可能破坏整体结构)
All in the details 一目了然
A 3D reconstruction of a Purkinje cell dendrite acquired on the ultrahigh-voltage electron microscope at Osaka. The specimen was 4 microns thick, allowing for examination of the dendrite and spines in their entirety. By imaging thick samples, researchers can study large biological structures at high resolution while avoiding cutting them into sections.
用超高压电子显微镜获得的Pukinje细胞树突结构。样品厚约4微米,可以保证完整观察到树突和棘的分布。 |