QQ登录

只需一步,快速开始

LBT开光了

[复制链接]
quasar 发表于 2005-10-29 17:32 | 显示全部楼层 |阅读模式 来自: 中国–江苏–南京 电信

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?加入牧夫(请注明天文爱好者,否则无法通过审核,请勿使用gmail/outlook/aol/icloud邮箱注册)

×
October 27, 2005        

New Telescope Opens Its Eyes
         
After 20 years of planning, developing and constructing, astronomers at the Max Planck Institute for Astronomy have finally released the first image captured by the new Large Binocular Telescope, an instrument with a light-gathering power 24 times greater than the Hubble Space Telescope. The so-called LBT, an American-German-Italian joint venture stationed on the 3,190-meter-high Mt. Graham in Arizona, will be able to image planets circling distant stars and is poised to help answer fundamental questions about the universe, including how galaxies, stars and planets evolved from the big bang.


                               
登录/注册后可看大图

"The LBT will open completely new possibilities in researching planets outside the solar system and the investigation of the farthest--and thus youngest--galaxies," says Thomas Henning of the Max Planck Institute for Astronomy. To date, a handful of impressive ground-based telescopes have provided astronomers with important insights about the universe. For example, they have learned that stars form in dense cloudlike features within galaxies. But observing the intricacies of star birth is difficult with these telescopes because the radiating energy of low-mass stars and brown dwarfs is not bright enough to be visible and interstellar dust can obscure views. The Hubble Space Telescope has helped overcome some of these problems, but this kind of instrument is expensive to build, launch and maintain.

Now a combination of advanced optics, instrumentation and high-power computers is making it possible for ground-based telescopes, particularly those situated on high mountaintops, to see deeper into space than ever before at a fraction of the cost. The LBT can resolve faint objects because it has two large mirrors--each 8.4 meters in diameter--that focus like field glasses for viewing. By combining the two views, the instrument is able to collect as much light as a single telescope with an 11.8-meter mirror. By comparison, the Hubble Space Telescope's mirror is 2.4 meters in diameter.

But the LBT doesn't rely only on its mirrors. It uses optics designed to adapt to observing conditions and it works with a combination of specialized instruments that can do such things as gather infrared images, detect the composition of the surface of stars, compensate for the blurring caused by turbulence in Earth's atmosphere, and boost image sharpness to a quality far better than that of Hubble.

For the "first light" image, astronomers used just one of LBT's mirrors to capture a spiral galaxy in the constellation Andromeda. In the future, they will use both mirrors to conduct a number of studies, including observing the Jupiterlike planets known to be revolving around our nearest neighboring stars. --Tracy Staedter


http://www.sciam.com/article.cfm?chanID=sa007&articleID=00006B44-F12D-135F-B12D83414B7F0000
光谱 发表于 2005-10-30 21:45 | 显示全部楼层 来自: 中国–河北–保定–阜平县 联通
!!

只是感觉HST真的老了。
回复 顶~ 砸~

使用道具 举报

本版积分规则

APP下載|手机版|爱牧夫天文淘宝店|牧夫天文网 ( 公安备案号21021102000967 )|网站地图|辽ICP备19018387号

GMT+8, 2024-11-26 01:23 , Processed in 0.115549 second(s), 6 queries , Gzip On, Redis On.

Powered by Discuz! X3.5 Licensed

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表