本帖最后由 gohomeman1 于 2009-4-12 14:24 编辑
Cool Stars Have Different Mix of Life-Forming Chemicals
寒冷恒星(周围行星)具有不同的生命起源的化学组成
For Release: April 07, 2009
2009.4.7
Life on Earth is thought to have arisen from a hot soup of chemicals.Does this same soup exist on planets around other stars? A new studyfrom NASA's Spitzer Space Telescope hints that planets around starscooler than our sun might possess a different mix of potentiallylife-forming, or "prebiotic," chemicals.
我们地球的生命被认为起源于相对高温的有机混合物溶液中(电闪雷鸣、火山喷发等等,事实上通过加热、放电、紫外线照射等等这样的手段确实用简单的无机物合成了各种氨基酸和嘌呤、嘧啶等,而现在这些手段基本都是生命杀手——译注)。在其他的恒星的行星系统中,这样的混合汤是否也存在呢?对斯皮策卫星观察资料的最新研究揭示出,在比我们太阳冷得多的恒星周围的行星系统中,生命起源可能采用不同的化学组成结构。
Astronomers used Spitzer to look for a prebiotic chemical, calledhydrogen cyanide, in the planet-forming material swirling arounddifferent types of stars. Hydrogen cyanide is a component of adenine,which is a basic element of DNA. DNA can be found in every livingorganism on Earth.
天文学家使用斯皮策卫星观测了在不同恒星周围的原始行星盘中,生命起源物质——氢氰酸HCN的含量。HCN是合成腺嘌呤的原始组件,而腺嘌呤是DNA链的四个基本构件之一。地球上的生命都含有DNA。
The researchers detected hydrogen cyanide molecules in disks circlingyellow stars like our sun -- but found none around cooler and smallerstars, such as the reddish-colored "M-dwarfs" and "brown dwarfs" commonthroughout the universe.
研究人员在类似太阳的黄色恒星周围的星云盘中检测到了HCN,但在更冷更小的恒星——比如遍布宇宙的M型红矮星和棕矮星——周围却没有找到HCN踪迹。
"Prebiotic chemistry may unfold differently on planets around coolstars," said Ilaria Pascucci, lead author of the new study from JohnsHopkins University, Baltimore, Md. The study will appear in the April10 issue of the Astrophysical Journal.
“寒冷恒星周围的行星上,生命前化学历程也许以不同的路径展开”,本论文首席作者、马里兰州 巴尔的摩市 约翰·霍普金斯大学研究团队的Ilaria Pascucci说。本研究报告将发表在09.4.10出版的《天体物理学杂志》上。
Young stars are born inside cocoons of dust and gas, which eventuallyflatten to disks. Dust and gas in the disks provide the raw materialfrom which planets form. Scientists think the molecules making up theprimordial ooze of life on Earth might have formed in such a disk.Prebiotic molecules, such as adenine, are thought to have rained downto our young planet via meteorites that crashed on the surface.
年轻恒星从尘埃和气体云组成的星茧中诞生,而星茧最终将转化为行星盘,行星盘中的气体、尘埃是行星产生的原材料。科学家猜测,原始地球上孕育生命的原始浆液很可能就从这样的行星盘中形成。经由大量(彗星和)陨石撞击地表的过程,原始生命分子(比如腺嘌呤)如暴雨般大量落向原始地球表面。
"It is plausible that life on Earth was kick-started by a rich supply of molecules delivered from space," said Pascucci.
“貌似地球上的生命启动于已经在太空形成的有机分子大量补充到星球表面”,Pascucci说。
Could the same life-generating steps take place around other stars?Pascucci and her colleagues addressed this question by examining theplanet-forming disks around 17 cool and 44 sun-like stars usingSpitzer's infrared spectrograph, an instrument that breaks light apart,revealing signatures of chemicals. The stars are all about one to threemillion years old, an age when planets are thought to be growing. Theastronomers specifically looked for ratios of hydrogen cyanide to abaseline molecule, acetylene.同样的生命起源历程能否在其他恒星周围产生?Pascucci和她的同事们通过对61个恒星周围行星盘的研究来解答这个问题。这些恒星中,44个类似太阳,17个更加寒冷。他们使用了斯皮策卫星的红外摄谱仪,这是一种根据不同的化学物质的特征光谱鉴别物质的仪器。研究对象的恒星年龄都在大约100——300万年,一般认为此时原始行星开始(吞并)成长。天文学家们特别留意了HCN氢氰酸分子相对于基准分子乙炔C2H2的比例。
They found that the cool stars, both the M-dwarf stars and browndwarfs, showed no hydrogen cyanide at all, while 30 percent of thesun-like stars did. "Perhaps ultraviolet light, which is much strongeraround the sun-like stars, may drive a higher production of thehydrogen cyanide," said Pascucci.
他们发现所有的寒冷恒星,无论是M型红矮星还是棕矮星,全都没有HCN分子踪迹,而类太阳恒星周围,只有30%左右的没有发现HCN。"看来类太阳恒星周围强烈的紫外辐射,能促使(行星盘)大量产生HCN",Pascucci说。
The team did detect their baseline molecule, acetylene, around the coolstars, demonstrating that the experiment worked. This is the first timethat any kind of molecule has been spotted in the disks around coolstars.
研究团队在寒冷恒星周围检测到了乙炔C2H2的分子基线,证明实验成果是有效的。这是首次对寒冷恒星周围的分子成分进行彻底的标签式检测。
The findings have implications for planets that have recently beendiscovered around M-dwarf stars. Some of these planets are thought tobe large versions of Earth, the so-called super Earths, but so far noneof them are believed to orbit in the habitable zone, where water wouldbe liquid. If such a planet is discovered, could it sustainlife?Astronomers aren't sure.
本次发现涵盖最近刚发现的M-红矮星的行星。其中的一些行星被认为相当于地球的大号版本,故称为超级地球。但是它们的轨道离恒星太远,远离水保持液态的可居住区。如果发现了这样的行星,它还能支持生命发展吗?天文学家不知道。
M-dwarfs have extreme magnetic outbursts that could be disruptive todeveloping life. But, with the new Spitzer results, they have anotherpiece of data to consider: these planets might be deficient in hydrogencyanide, a molecule thought to have eventually become a part of us.
M型矮星的耀斑爆发能够破坏生命发展。但是根据斯皮策卫星数据的最新研究成果,他们要考虑另一个问题:这些超级地球很可能一开始就缺少HCN,这种最后构成我们身体组织一部分的基础分子。
Said Douglas Hudgins, the Spitzer program scientist at NASAHeadquarters, Washington, "Although scientists have long been awarethat the tumultuous nature of many cool stars might present asignificant challenge for the development of life, this result begs aneven more fundamental question: Do cool star systems even contain thenecessary ingredients for the formation of life? If the answer is nothen questions about life around cool stars become moot."
在华盛顿NASA总部,斯皮策卫星项目科学家道格拉斯·亨德金(DouglasHudgins)说:“虽然科学家深刻了解许多寒冷恒星的混乱自然环境对生命发展是个重大挑战,但本发现提出了一个更基本的问题:寒冷恒星系统是否具有生命形成的必要条件?如果答案是否,那么寒冷恒星系统的生命问题已经毫无意义。”
Other authors include Daniel Apai of the Space Telescope ScienceInstitute, Baltimore, Md.; Kevin Luhman of Pennsylvania StateUniversity, University Park; Thomas Henning and Jeroen Bouwman of theMax Planck Institute for Astronomy, Germany; Michael Meyer of theUniversity of Arizona, Tucson; Fred Lahuis of the SRON NetherlandsInstitute for Space Research, the Netherlands; and Antonella Natta ofthe Arcetri Astrophysical Observatory, Italy.
其他论文作者:马里兰州巴尔的摩市太空望远镜科学研究所的丹尼尔·Apai;宾西法尼亚州立大学的凯文·Luhman;德国马克士普朗克天体物理研究所托马斯·亨宁和Jeroen·Bouwman;图森市亚利桑那大学的迈克尔·梅耶尔;荷兰尼德兰空间研究协会(SRON)的弗雷德·拉豪斯;意大利佛罗伦斯市雅赛墔天体物理观测站的Antonella·纳塔等。(未标注国名的默认为美国)
Whitney Clavin 818-354-4673
地址、电话:惠特尼Clavin区
Jet Propulsion Laboratory, Pasadena, Calif.
加利福尼亚州 帕萨迪纳市(洛杉矶东北)美国喷气推进实验室
whitney.clavin@jpl.nasa.gov
ssc2009-09
jpl2009-064(2个版权信息)
PS:Ilaria,一般译为艾里娅,不过后面的姓不知道译为什么好
地球上的生命并不都含有DNA,也并非一定要生活在含氧环境下。不过这点不怎么影响文章整体的意思。
生命真是奇特,虽然HCN能够合成腺嘌呤,它本身对我们却是剧毒的。
原始地球形成后,大量的彗星陨石夹带着巨量的水和有机物落到地球,与地球正在进行的结构分层相结合,在地球表面产生大量的高温湖泊。这些湖泊中,随着高温、闪电、紫外线、宇宙辐射等共同作用,有机物变得越来越复杂,终于诞生了原始生命。期间,生命可能夭折过无数回,但终于挺过了后面的火星撞地球(产生了月球),并最终在原始大洋中稳定下来。随着绿藻、蓝藻类的生命产生,地球大气中开始了历经数10亿年的氧累积过程,并最终彻底改变了地球大气组成和地球整体环境。——by gohomeman1 |