QQ登录

只需一步,快速开始

循环的宇宙:尼尔•图洛克的专访

  [复制链接]
天道无极 发表于 2011-11-23 23:01 | 显示全部楼层 |阅读模式 来自: 马来西亚 TMNet电信公司

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?加入牧夫(请注明天文爱好者,否则无法通过审核,请勿使用gmail/outlook/aol/icloud邮箱注册)

×
本帖最后由 天道无极 于 2012-3-22 22:16 编辑

第一次发翻译贴!菜鸟一只,若有翻得不当之处,还请各位斑竹和大虾们拍砖



以下是全文:



                               
登录/注册后可看大图

在过去的十年, 我主要的工作是寻求宇宙是如何起源——或者它根本没有开始。大爆炸时发生了什么? 对我来说,这看起来就像是一个在科学上的最基础的问题,因为我们都知道所有的一切都来源于大爆炸。不管它是粒子或行星或恒星,甚至是最终生命的本身。

近年来,寻找自然的基本法律迫使我们更深入的思考大爆炸理论。根据我们目前最好的理论-弦论和M理论——所有物理定律的细节实际上是由宇宙的结构来决定的;特别是以微小的、卷曲额外维度的空间德排列方式。这是一个非常优美的图像: 粒子物理学本身就是现在宇宙学的另一面。但是如果你想理解为什么额外维度的这些组合,你必须了解大爆炸,因为那是一切的根源。

在某种程度上, 直到最近, 在基本物理领域已经没有认真的处理这个问题了。甚至早在1920年代,爱因斯坦,弗里德曼和勒梅特——现代宇宙学的奠基者们都意识到有一个奇异点位于大爆炸的起点。这在某种程度上,当你回顾宇宙的历史, (理论上)对于大约140亿年前所发生的事发生了严重的错误。上述的错误, 我的意思是, 所有的物理定律都崩溃了!这就造成了无限大和无意义的结果。爱因斯坦本人并没有解释这就是时间的起点,他只是说, 嗯,他的理论失效了。当大多数的理论在一些领域瓦解了, 那我们就需要更好的理论(来解释)。艾萨克·牛顿的理论不能用来阐述高速运动的粒子。你需要相对论。同样的,爱因斯坦说, 我们需要一个比他提出的更好的重力理论。

但是在1960年代, 当对大爆炸的观测证据变得非常确凿时, 物理学家得出这样的结论: 时间一定有个开端。我不明白为什么他们这么想, 不过也许是因为弗雷德霍伊尔——稳态理论的主要支持者——那位似乎一直在嘲笑大爆炸理论,并说这是没有道理的人。因为它暗示了时间的开端, 而这听起来是荒谬的。

然后大爆炸理论经由观察而被证实了。我想那些刚接受霍伊尔的论点的人会说, 哦, 大爆炸是对的, 好了, 那么时间就必须有个起点。所以我们都产生了这样的想法:在某种程度上,时间本身以及相关的一些过程和事件不能藉由物理来阐明的。那是令人非常沮丧的事。我们周围的一切完全取决于那个事件的本身, 但那是我们无法用语言来叙述的事。而那就是宇宙学的现状,同时人们也开始担忧20年后的一些问题。

然后在1980年代, 当暴涨的理论首次被提出来时,粒子物理与宇宙学开始走向融合了。暴涨理论也没能解释宇宙的起源, 不过它令我们(在这个问题上)又向前迈进了一大步。有人说,我们只要认为宇宙以某种方式起源就可以了。但是, 我们还要假定它什么时候开始创生, 那时(整个宇宙)到处都充斥一种奇异的能量, 叫做暴涨能量。这种能量是一种斥力——它的能量场不像重力场那样吸引像普通物质的东西——它最主要的性质是导致宇宙非常快的扩张。像炸药般, 渐渐地吹涨了宇宙。

这个暴涨理论很受欢迎。它成功预测了一些宇宙中的现象, 与最近的观测非常符合。这些预测关于描述宇宙的某些特性还是相当简约和有用的: 它(宇宙)在大尺度上是相当平整、光滑的;另外,它还有一些极其简单的密度上的变化的特征。暴涨理论预测,这些密度的变化就像随机的噪声——有点像海平面的波纹——部分的密度差异在所有尺度里大致上是相同的。和这些预测的都经广泛的观察所证实。所以暴涨理论变得非常的诱人, 许多人都认为它是正确的。不过,暴涨理论确实从未对宇宙的起源这个根本的问题给予解释。我们只是假设宇宙在极早期的阶段充满了暴涨的能量。而这一切从未被阐述为什么会发生。

我从事这个项目的工作大约始于十年前, 当我从普林斯顿搬到剑桥来的时候。我在那里遇见了斯蒂芬·霍金以及詹姆斯·哈特, 并共同提出了一种预示宇宙是怎么起源的理论。所以我就开始与史蒂芬一道工作,一起计算并找出这个理论的实际预测。不幸的是, 我们很快就得出这样的结论: 理论预测了一个空旷的宇宙。事实上, 这也许并不令人感到惊讶: 如果打从一开始就什么都没有的话,那么你将得到一个空的宇宙,而不是一个充满一切的宇宙。我很幽默, 当然, 当你经过详细的计算, 霍金的理论似乎就会预示一个这样的宇宙存在。

所以我们都试图找出各种方法来解决这个问题, 但一切我们所做的改进——就是要使预测结果更真实同时还要保持理论的优美。理论物理学真的是一个美妙的科目, 因为它是一个罪恶无法滋长的道德规范。你可以忽悠它一会儿, 也能够提出一些修改方法及附件来使你的理论行得通。但从长远来说,如果它(理论)不太好的话, 它就会崩溃。我们知道好多关于宇宙和自然规律, 以及这一切是如何融合在一起, 所以要获得一个完全一致的理论是非常困难的事。当你开始想要忽悠,那你就已破坏一个特殊的对称性, 事实上, 那是整个结构的一致性的关键。如果这些对称崩溃了, 那么整个理论也会瓦解。霍金的理论仍然是一项未竟之业的研究的话题, 人们仍然在进行这项工作,并试图把它解决了。但是我决定, 在四到五年之后, 该方法是无法发挥作用。要让宇宙的起源并布满暴涨的能量极其困难的事。我们需要进行一些与众不同的尝试。

因此, 跟随保罗·斯坦哈特, 我决定组织一个在剑桥大学的艾萨克·牛顿研究所里的工作室,并致力于宇宙学的基础研究。这是一个大哉问: 如何明智地解释宇宙大爆炸。我们决定召集所有在弦理论、M理论和宇宙学领域里最具创意的理论家一道来好好想想, 看看是否会有不同的方法。工作室里的气氛很是令人振奋,而我们的工作热情也正来源于此。

弦论和M理论正是爱因斯坦本人长久以来所一直在寻找、所盼望的终极理论。他的重力理论是迄今我们所拥有的最美妙、最优雅和最成功的理论, 但是它看起来与量子力学并不协调,而且我们知道这正是其他所有的物理定律至关重要的因素。如果你天真地以为可以试图将重力量子化, 你将得到一个无限大的值并且无法在不影响整个理论的预测能力之下去处理它。弦论成功地连接重力与量子力学在一种看似一致的数学框架里。不幸的是,到目前为止, 唯一的情况是我们真的可以在弦理论中得到一个准确地计算但不是很实际的图像: 例如, 我们能在静态的、空白的与一些引力波的地方作很精确的计算。不过,由于其非常紧致和一致性的数学结构,许多人都觉得,弦论有可能是正确的选择。

弦论产生了一些全新又特殊的概念。一是我们看到的每个粒子实际上是一小串的弦。另一个是我们称之为膜的东西,基本上就是更高维度的弦。那时在我们的工作室里,一个新的想法诞生了:我们生活经验中的三维空间可能实际上是这些膜的其中之一。我们居住的膜可能是一种漂浮在一个较高维度的空间的薄膜状的物体。在这基础上我们建立了一个与粒子物理很好的结合的宇宙模型,这是由两个拥有非常微小的间隔的平行的膜构成的。在我们的工作坊中许多人都谈论着这个模型,包括帕特·欧弗鲁特。保罗和我都有这样的一个问题,那就是如果这两个膜发生碰撞时会发生什么事。在那之前,人们都只考虑一个静态的设定。他们形容这些膜就静止在那里,所有的粒子都在上面,他们还发现这个设定符合很多有关粒子与作用力的数据。但是他们没有考虑到这种膜能够移动的可能性,即使那是完全被这一理论允许的事。如果这些膜会动,它们就会碰撞。我们的初步想法是,如果他们发生碰撞,可能就是大爆炸(发生的原因)。碰撞将会是一个非常狂暴的过程,在这两种膜的相撞中会产生大量的热和辐射以及粒子。。。就像大爆炸一样。

帕特、保罗和我开始小心翼翼的研究这一个膜的碰撞过程。我们意识到,如果它真的发生的话,这一想法可能意味着大爆炸并不是时间的开端,而是一个完全可以被阐明的物理事件。我们也意识到这可能有多方面的影响,如果那是对的。例如,(它)不仅能够解释大爆炸,也可以解释充满这宇宙间的辐射的产生,因为有一个之前就存在的宇宙,在这两张移动的膜的框架内。你可能会问,要怎么解释这些呢?那就是我想说的循环模型。循环模型这个概念来自于一次又一次的大爆炸,并可能会持续至永恒。整个宇宙可能永远存在,并且会有一系列的这些大爆炸,从无限的过去到无限的未来。

在过去的五年里,我们一直都在不断地完善这个模型。我们首先要做的是审视这个模型是否和观察数据相符合,看看其是否能复制一些成功的暴涨理论模型。令我们吃惊的是,我们发现它可以,而且在某些情况下,它比暴涨更“经济”。如果两个膜彼此吸引,那它们将会彼此产生褶曲,像在海面上的涟漪一样。当膜与膜相撞的时候,这些褶曲就变成了(所观测到的)密度不均匀,然后释放物质与辐射。这些密度的不均匀就导致了星系的形成。

我们发现,利用一些简单的假设,我们的模型可以解释和观测相符并和暴涨模型拥有相同的精度的结果。这是有意义的,因为有两个非常不同的机制却可以达到相同的目标。两个模型都能解释比较广泛的,相对简单的宇宙的性质:在大尺度上几乎一致。它是平的,像欧氏空间,同时拥有这些单纯的密度不均匀,并且表现在每一个尺度上都有相同的强度。这些特点都不约而同的被循环模型和暴涨模型很好的诠释。甚至有可能还有其他更好的模型,只是还没有人想到过的。在任何情况下,能有各种不同的竞争对手对科学来说是一个健康的态势。这有助于我们认清哪些关键测试——无论是观测抑或数学/逻辑上——将会是识别一些理论和证明它们是错误的关键。这些模型之间的竞争是好的:它帮助我们了解我们的理论强项和不足之处。

在这种情况下,一场对于比较成熟的暴涨模型和我们全新的循环模型的对垒是富有推理性的:他们都有各自的不足和难题。在暴涨之前发生了什么事?使整个宇宙在膨胀,或者只有一部分?或者,对于循环模型,我们计算所有有关膜碰撞的细节,并使粗糙的观点转为精确的数学模型?这是我们作为一个理论家的工作:将这些问题推向极限,然后证明它们能否被修改,或者只会对模型造成毁灭性(的打击)。

同样的,更重要的一点,就是试图通过观测测试模型(的正确性),因为缺乏实验或观测数据支持就是一个伪科学(的理论)。尽管循环模型和暴涨模型有相似的预测,至少还有一个方式,我们知道如何对它们证伪。如果有一个暴涨的短暂周期——一股巨大的膨胀能量在宇宙诞生不久时爆发——它会使引力波充满整个宇宙空间,那就有可能被今天的我们探测到。目前已有好几个实验和观测项目都已展开对它(引力波)的搜寻。在明年,欧洲太空总署的普朗克卫星可以最大程度地作这方面的尝试:它应该能探测到最简单的暴涨模型所预言的引力波。但我们的模型预测普朗克卫星和其他类似的实验将不会检测到什么。所以我们可以用实验来证明谁是谁非。


                               
登录/注册后可看大图


----------------------------------------无敌的分割线---------------------------------------

眼下最让我感到兴奋的是我们已在不断完善这个能够揭示在宇宙创生的瞬间的数学模型的细节。我们对奇异点(的性质)的理解已经取得了一些很好的进展。那是,根据爱因斯坦的理论,一切都会变成无限大的地方;当整个宇宙空间缩小到一个点,辐射与物质的密度就会变成无限大,而这正是爱因斯坦方程式崩溃之处。

我们的新理论是基于一个在大约十年前,在弦理论中的一个非常优雅的发现,它有一个非常专有的名字。它被称为Anti-De SitterConformal Field Theory correspondence(简称为AdS/CFT correspondence)。我不会试图解释它,但基本上它是一个非常优美的几何构想,认为如果我处在一个可能非常大的时空区域,那么在某些情况下我可以想象,这个宇宙被一个所谓的边界所包围——这基本上就像是被一个盒子所封闭且让我们感兴趣的时空区域。大约10年前,它还显示即使这个容器的内部被重力所描述,以及所有它所带出的难题,包括黑洞的形成和各种悖论——所有发生在盒子里面的事情可以被生活在这个盒子的墙外围(的人们)的理论所描述。这就是所谓的一致性。一个重力理论与另一个理论不含重力的理论的协调,也就没有了哪些有关重力的悖论。我们最近一直在做的就是利用这个框架来研究一个在这个盒内由时间开展出来的奇异点里会发生什么事。我们是通过研究那个包围整个宇宙的盒子的表面,间接的研究奇异点。当我们这样做时,我们发现,如果宇宙崩溃变成一个奇异点,它会反弹,宇宙会被反弹而重新开始(诞生)。当它经过这个奇异点时,宇宙就会变得充满辐射——就像膜碰撞模型所描述的那样——同时密度的不均匀产生了。

这是非常的新颖的研究工作,但一旦完成了我想它会走得更远,并可以令人相信大爆炸,以及类似的事件,实际上是能被数学模型解释的。我们所研究的模型实际上不是我们能看见的物理现象,因为它含有四个大空间维度。结果表明,我们接受它是因为它提供我们一个简洁的研究方法,而不是技术上的原因。当然,真正的宇宙只有三个大空间维度,但我们现在却接受这个有四个大空间维度(的模型),因为它使计算变得更简单。从定性的角度来说,这项研究揭示我们可以研究奇异点处的重力场并可以很好的理解它。这真是令人激动万分,而我认为我们正处在一个非常有趣的(研究)方向。我希望我们能了解奇异点如何在重力场中形成,宇宙如何通过它们来演化,然后他们又到何处去。

我怀疑大爆炸的叙述——也就是大爆炸本身就是在我们的宇宙之中形成奇异点的机制。我认为理解它比了解我们目前所看到的物理定律如何制定更实际:为什么会有电磁力、强核力、弱核力等等这种种不同的作用力。这一切正是大爆炸在极微小的尺度上对宇宙的结构所制定的结果。这是一个非常具有挑战性的领域,但我很高兴我们实际上正在取得进展。


                               
登录/注册后可看大图


----------------------------------------我是分割线-----------------------------------------

目前理论物理上的重大问题——实际上是错的,我相信,因为我认为人们会倾向于研究奇异点和大爆炸(的关系),是因为它们很明显的就是一切来源。但大多数人只是避开了这个问题——所有的物理法则,根据弦理论,乃是空间的额外维度的不同卷曲方式所造成的。所以除了我们已知道的三维空间以外,弦理论还预言应该还有六个或更多的维度蜷伏在微小的空间里。所以在我们所身处的世界应该还有其他六个或更多维度扭结在微小的节点上。而问题是有大量不同的把这些额外维度扭曲的方式存在。也许,是有无限种的方法。大致说来,你可以用膜和其它周围的物体把它们卷起来,把它们卷成像有无数细线的手巾和绷带般。

这或许会导致许多人为之抓狂。弦理论被认为是一个独特的、且只能预测一组物理定律的理论,但事实上它允许许多不同类型的宇宙对应它们的额外维度的不同卷曲方式存在。哪一个才是我们居住的宇宙?一些人只是认为,因为他们假设宇宙只是起始于某段时间里的一场大爆炸,就像扔一个骰子一样。他们说,好吧,(那些弦)可以是这样或那样,甚至是其他不同的卷曲方式。我们没有办法判断哪一个比其他的卷曲方式更基本,所以我们假定它们是随机的。结果是,他们不能预知任何东西。因为他们没有大爆炸的理论,他们没有一个理论可以说明这些额外维度会以哪种方式卷曲。他们把这叫做景观;这是所有可能的宇宙的景观,并且他们也没有理论说明为什么我们应该住在任何这个景观里的特定位置。所以他们会怎麽做呢?

嗯,他们说,也许我们需要人择原理。人择原理说,宇宙必须是这样的,因为如果哪怕是有任何一点的不同,我们都不会在这里。这个想法就是有一个有很多宇宙的大景观,但是只有一个可以让我们存在的就是拥有我们能观察到的物理法则所支配的宇宙。这听起来像一个确实很古怪的论点。这是一个怪异到极点的论点。因为它不会预测任何东西。这是一个典型的后知后觉的论点:它只是说,哦,它必须是这样的,否则我们都不会在这里谈论它了。它还有很多其他在逻辑上的争论,但在大体上是这种论点并不能真的能让你知道得更多。它无法预测也不能被证伪。人择原理,在目前的这个阶段,并不能对我们的课题产生任何实质的进展。更糟的是,它对于我们在处理这些重要的问题上是让人感到沮丧的。事实上像弦理论,我们知道它是一个不完整的理论,而且在大爆炸这个课题上还需要更多的补充。那是一个再明显不过的事,不过仍有少数人仍然接纳它。

我对弦景观的真实性存有怀疑。因为仍有一些在计算上的疑问,对所有这些卷曲的方式是否都是合理的问题还有待商榷。这些都还未被证实。但如果它是对的话,那么我们要如何决定哪一种配置(卷曲方式)将会被我们的宇宙所采纳呢?在我看来,无论是哪种配置,我们首先得要面对大爆炸理论。我们需要一个有关大爆炸如何发生的理论,无论是一个描述时间如何开始,或者描述宇宙如何通过一个类似大爆炸的事件。而当它经过这起事件后,将对这些额外维度造成显著的影响。对我来说,最有可能的答案是我们这个的宇宙的动力学性质会选择一个最有效的,能够经历大爆炸这起事件同时允许其循环了一个极长的时间的配置。

例如,举个小例子:如果你问,为什么在这个房间里气体能够平稳的分布,我们就需要一个物理理论来解释它。当然我不会说,嗯,如果不是这样的话,这个房间的一部分会变成完全的真空,然后如果我走进去的话,我就会死掉。如果气体不是均匀的分布的话,我们就不能在房子里头呆太久。这就是人择原理。但这不能算是科学的解释。正确的解释应该是气体分子在房间里乱窜,而只有当我们理解它们的动力学原理之后,就会发现这些气体分子最有可能的是倾向于均匀的布满整个房间这种分布方式。那与人们的存在与否无关。
同样的道理,我认为要解开宇宙最大的秘密,最有效的途径就是先了解大爆炸是如何发生的。然后,当我们知道了大爆炸的运作原理之后,我们期盼这个原理能够产生像我们现在居住的这样的一个宇宙。如果我们无法了解这个原理,那么我们也就不能做什么,唯有放弃并诉诸人择原理的论点而已。这是再明显不过的,但奇怪的是,这仅仅是少数人的观点。在我们的课题里,目前大多数人的观点是在这个怪诞的弦景观的图像里,没人知道是什么人,或是什么过程,会选择并将我们放置在这些宇宙之中。


                               
登录/注册后可看大图

--------------------------------------就跟你说这是分割线-----------------------------------

循环宇宙的理念是我们生活中所经验的三维空间,实际上被不断延伸的一张膜,只要我们记住它是三维的。一般的情况之下,为了表达和理解,我们都会画一张二维的膜来表示它。按照这个图像,我们其实是生活在其中的一张膜里。而这张膜也不是孤立的,它还有另一个伴侣,并且只和我们相距一个非常小的间隔。一张膜里头有三维空间,第四维度将两层膜隔开。在理论中还有其他六个维度的空间,同样蜷缩在微小的空间里,不过我们暂且不必理会它们。

所以我们就有了两个平行的膜世界这样设置,这是不折不扣地几何平行世界,被一个非常小的间隙隔开。我们从没想过这种图像。这图像是来自于我们描述基本粒子和力场的最深奥的数学模型。当我们试图描绘何谓真实、夸克、电子、光子,以及这一切的事物时,我们就得到了这幅关于两张平行的膜世界的图像,并且我们的出发点是认为这幅图像是正确的。

这种薄膜有时候也被称为“世界尽头之膜”。基本上它们就像时一面镜子;它们是彼此的反面。在它们之外空无一物。它们是名副其实的世界的尽头。如果你像跨越这两层膜之间的间隔,最终也会撞上其中的一张膜而被反弹回来。没有什么能够跨越它。所以我们有的就是这两个平行的膜和它们之间的间隙。不过这两张膜是可以移动的。因此我们就从今日的宇宙开始说起。今天,我们坐在这里,我们生活在其中的一张膜里。还有另一张膜,它非常接近我们。我们看不见它,因为光只能在我们的膜里传播,但另一张膜与我们的距离比原子核的大小还短。膜与膜之间几乎就是肩并肩的。我们也知道,在今日的宇宙里,充斥着一种叫做“暗能量”的东西。暗能量其实就是真空的能量。在循环理论里,两张膜之间的吸引力所伴随的能量部分来自于这个暗能量。

想像一下,如果这两张膜彼此相互吸引,当你想将它们分开,你就必须向这个系统施加能量。那就是暗能量。暗能量造成这两张膜互相吸引。现在宇宙充满了暗能量;这是我们从观察得来的结果。根据我们的模型,暗能量实际上是不稳定的,它不会永远保持不变。想象一下一个在山丘上滚动的球,它初始的位置越高,势能就越大;同样的,暗能量也会随着膜与膜之间的距离扩大而提高。在某一点处,球会转过身来向下坡滚去。同样的,经过一段暗能量占统治地位的时期,这两张膜开始走向对方,然后碰撞,也就是大爆炸的起源。在循环模型中,暗能量的衰减导致了下一次的大爆炸的契机。

暗能量是在1999年经观测并证实其存在,也带给暴涨模型一个莫大的惊喜。在暴涨模型中,暗能量没有存在的理由;它对极早期的宇宙毫无作用。但在循环模型中,暗能量是至关重要的,因为它的衰减才导致下一次大爆炸的发生。

循环式膜碰撞解决了长久以来困扰着循环模型的难题。循环模型实际上不是一个新颖的设想;早在1930年代,弗里德曼和其他人就已提出一个循环模型。他们设想一个有限的宇宙,一遍又一遍的反复崩塌和反弹。但是理查德·托尔曼很快就指出,事实上,它也不能避开宇宙必须有个开端的问题。那些循环模型不被采纳的原因是因为每次反弹都会产生更多的辐射能量,这就意味着宇宙会有越来越多的物质。根据爱因斯坦的方程式,这使宇宙每次反弹后会变得越来越大,同时每次循环的时间将会越来越长。但是,追溯回过去,每次反弹后的时间周期变得越来越短,一直缩短至到零为止,这意味着宇宙起始于一个有限的过去。在旧的框架里,永恒循环模型是不可能出现的。不同的是,我们的模型采用了暗能量和无限个宇宙的存在,所以稀释了每次大爆炸所产生的辐射与物质。这样就会得到一个可以无限次循环、永恒存在的宇宙。



                               
登录/注册后可看大图




                               
登录/注册后可看大图



注:尼尔·图洛克(Neil Geoffrey Turok)目前出任位于加拿大安大略省滑铁卢市的圆周理论物理研究所的主任一职。他与保罗·斯坦哈特(Paul J. Steinhardt)于2007年一同合著并推出了新书——Endless Universe: Beyond the BigBang。

评分

参与人数 2牧夫币 +11 收起 理由
人与自然 + 1 非常有启发的好帖!
减肥自行车 + 10 感谢分享

查看全部评分

[img]http://postfiles15.naver.net/20120318_238/khel3d2oat_1332055102951h4t1b_JPEG/%B2%D9%B9%CC%B1%E2_12031801_Prometheus
民兵l 发表于 2011-11-23 23:07 | 显示全部楼层 来自: 中国–山西–晋城 联通
学习,学习,学习

点评

这位同好不Hexie啊~  发表于 2011-11-23 23:26
回复 顶~ 砸~

使用道具 举报

 楼主| 天道无极 发表于 2011-11-23 23:17 | 显示全部楼层 来自: 马来西亚 TMNet电信公司
本帖最后由 天道无极 于 2011-11-24 14:48 编辑

这是原文:


THE CYCLIC UNIVERSEA Talk With Neil Turok


[NEIL TUROK:] For the last ten years I havemainly been working on the question of how the universe began — or didn'tbegin. What happened at the Big Bang? To me this seems like one of the mostfundamental questions in science, because everything we know of emerged fromthe Big Bang. Whether it's particles or planets or stars or, ultimately, evenlife itself.
In recent years, the searchfor the fundamental laws of nature has forced us to think about the Big Bangmuch more deeply. According to our best theories — string theory and M theory —all of the details of the laws of physics are actually determined by thestructure of the universe; specifically, by the arrangement of tiny, curled-upextra dimensions of space. This is a very beautiful picture: particle physics itselfis now just another aspect of cosmology. But if you want to understand why theextra dimensions are arranged as they are, you have to understand the Big Bangbecause that's where everything came from.
Somehow, until quiterecently, fundamental physics had gotten along without really tackling thatproblem. Even back in the 1920's, Einstein, Friedmann and Lemaitre — thefounders of modern cosmology — realized there was a singularity at the BigBang. That somehow, when you trace the universe back, everything went wrongabout 14 billion years ago. By go wrong, I mean all the laws of physics breakdown: they give infinities and meaningless results. Einstein himself didn'tinterpret this as the beginning of time; he just said, well, my theory fails.Most theories fail in some regime, and then you need a better theory. IsaacNewton's theory fails when particles go very fast; it fails to describe that.You need relativity. Likewise, Einstein said, we need a better theory ofgravity than mine.
But in the 1960's, when theobservational evidence for the Big Bang became very strong, physicists somehowleapt to the conclusion that it must have been the beginning of time. I am notsure why they did so, but perhaps it was due to Fred Hoyle — the main proponentof the rival steady-state theory — who seems to have successfully ridiculed theBig Bang theory by saying it did not make sense because it implied a beginningof time and that sounded nonsensical.   
Then the Big Bang wasconfirmed by observation. And I think everyone just bought Hoyle's argument andsaid, oh well, the Big Bang is true, okay, so time must have begun. So weslipped into this way of thinking: that somehow time began and that theprocess, or event, whereby it began is not describable by physics. That's verysad. Everything we see around us rests completely on that event, and yet thatis the event we can't describe. That's basically where things stood incosmology, and people just worried about other questions for the next 20 years.
And then in the 1980s,there was a merging of particle physics and cosmology, when the theory ofinflation was invented. Inflationary theory also didn't deal with the beginningof the universe, but it took us back further towards it. People said, let'sjust assume the universe began, somehow. But, we're going to assume that whenit began, it was full of a weird sort of energy called inflationary energy.This energy is repulsive — its gravitational field is not attractive, likeordinary matter — and the main property of that energy is that it causes theuniverse to expand, hugely fast. Literally like dynamite, it blows up theuniverse.
This inflationary theorybecame very popular. It made some predictions about the universe, and recentobservations are very much in line with them. The type of predictions it madeare rather simple and qualitative descriptions of certain features of theuniverse: it's very smooth and flat on large scales; and it has some densityvariations, of a very simple character. Inflationary theory predicts that thedensity variations are like random noise — something like the ripples on thesurface of the sea — and fractional variation in the density is roughly thesame on all length scales. And these predictions of inflation have been broadlyconfirmed by observation. So people have become very attracted to inflation andmany people think it's correct. But inflationary theory never really dealt withthe beginning of the universe. We just had to assume the universe started outfull of inflationary energy. That was never explained.
My own work in this subject startedabout ten years ago, when I moved to Cambridge from Princeton. There I metStephen Hawking, who, with James Hartle, developed a theory about how theuniverse can begin. So I started to work with Stephen, to do calculations tofigure out what this theory actually predicted. Unfortunately, we quicklyreached the conclusion that the theory predicted an empty universe. Indeed,this is perhaps not so surprising: if you start with nothing, it makes moresense that you'd get an empty universe rather than a full one. I'm beingfacetious, of course, but when you go through the detailed math, Hawking'stheory seems to predict an empty universe, not a full one.
So we tried to think of various waysin which this problem might be cured, but everything we did to improve thatresult — to make the prediction more realistic & mdashspoils the beauty of thetheory. Theoretical physics is really a wonderful subject because it's adiscipline where crime does not pay in the long run. You can fake it forawhile, you can introduce fixes and little gadgets which make your theory work,but in the long run, if it’s no good, it'll fall apart. We know enough aboutthe universe and the laws of nature, and how it all fits together, that it isextremely difficult to make a fully consistent theory. And when you start tocheat, you start to violate special symmetries which are, in fact, the key tothe consistency of the whole structure. If those symmetries fall apart, andthen the whole theory falls apart. Hawking's theory is still an ongoing subjectof research, and people are still working on it and trying to fix it, but Idecided, after four or five years, that the approach wasn't working. It's very,very hard to make a universe begin and be full of inflationary energy. Weneeded to try something radically different.
So, along with Paul Steinhardt, Idecided to organize a workshop at the Isaac Newton Institute in Cambridge,devoted to fundamental challenges in cosmology. And this was the big one: howto sensibly explain the Big Bang. We decided to bring together the mostcreative theorists in string theory, M theory and cosmology to brainstorm andsee if there could be a different approach. The workshop was very stimulating,and our own work emerged from it.
String theory and M theory areprecisely the kinds of theories which Einstein himself had been looking for.His theory of gravity is a wonderful theory and still the most beautiful andsuccessful theory we have, but it doesn't seem to link properly with quantummechanics, which we know is a crucial ingredient for all the other laws ofphysics. If you try to quantize gravity naively, you get infinities whichcannot be removed without spoiling all of the theory's predictive power. Stringtheory succeeds in linking gravity and quantum mechanics within what seems tobe a consistent mathematical framework. Unfortunately, thus far, the only caseswhere we can really calculate well in string theory are not very physicallyrealistic: for example, one can do very precise calculations in static, emptyspace with some gravitational waves. Nevertheless, because of its very tightand consistent mathematical structure, many people feel string theory isprobably on the right track.
String theoryintroduces some weird new concepts. One is that every particle we see isactually a little piece of string. Another is that there are objects calledbranes, short for membranes, which are basically higher-dimensional versions ofstring. At the time of our workshop, a new idea had just emerged: the idea thatthe three dimensions of space we experience could in fact be the dimensionsalong one of these branes. The brane we live on could be a sort of sheet-likeobject floating around in a higher dimension of space. This underlies a modelof the universe which fits particle physics very well and which consists of twoparallel branes separated by a very, very tiny gap. Many people were talkingabout this model in our workshop, including Burt Ovrut, and Paul and I askedthe question of what happens if these two branes collide. Until then, peoplehad generally only considered a static setup. They described the branes sittingthere, with particles on them, and they found that this setup fit a lot of thedata we have about particles and forces very well. But they hadn't consideredthe possibility that branes could move, even though that is perfectly allowedby the theory. And if the branes can move, they can collide. Our initialthought was that, if they collide, that might have been the Big Bang. Thecollision would be a very violent process, in which the clash of the two braneswould generate lots of heat and radiation and particles… just like a Big Bang.
Burt, Paul and Ibegan to study this process of the collision of the branes carefully. Werealized that, if it worked, this idea would imply that the Big Bang was notthe beginning of time but, rather, a perfectly describable physicalevent.  We also realized this might have many implications, if it weretrue. For example, not only could we explain the Bang, we could explain theproduction of radiation which fills the universe, because there was a previousexisting universe, within which these two branes were moving. And whatexplained that, you might ask? That's where the cyclic model came in. Thecyclic model emerged from the idea that each Bang was followed by another, andthat this could go on for eternity. The whole universe might have existedforever, and there would have been a series of these Bangs, stretching backinto the infinite past, and into the infinite future.
For the last fiveyears, we've worked on refining this model. The first thing we had to do was tomatch the model to observation, to see if it could reproduce some of theinflationary model's successes. Much to our surprise, we found that it could,and in some cases in a more economical way than inflation. If the two branesattract one another, then as they pull towards one another they acquireripples, like the ripples on the sea I mentioned before. Those ripples turninto density variations as the branes collide and release matter and radiation,and these density variations later lead to the formation of galaxies in theuniverse.
We found that,with some simple assumptions, our model could explain the observations to justthe same accuracy as the inflationary model. That's instructive, because itsays there are these two very different mechanisms which achieve the same end.Both models explain rather broad, simple features of the universe: that it isnearly uniform on large scales. That it is flat, like Euclidean space, and thatit has these simple density variations, with nearly the same strength on everylength scale. These features are explained either by the brane collision modelor by the inflation model. And there might even be another, better model whichno-one has yet thought of. In any case, it is a healthy situation for scienceto have rival theories, which are as different as possible. This helps us toclearly identify which critical tests — be they observational ormathematical/logical — will be the key to distinguishing the theories andproving some of them wrong. Competition between models is good: it helps us seewhat the strengths and weaknesses and our theories are.
In this case, a keybattleground between the more established inflationary model and our new cyclicmodel is theoretical: each model has flaws and puzzles. What happened beforeinflation? Does most of the universe inflate, or only some of it? Or, for thecyclic model, can we calculate all the details of the brane collision, and turnthe rough arguments into precise mathematics? It is our job as theorists topush those problems to the limit to see whether they can be cured, or whetherthey will instead prove fatal for the models.
Equally, if notmore important, is the attempt to test the models observationally, becausescience is nothing without observational test. Even though the cyclic model andinflation have similar predictions, there is at least one way we know oftelling them apart. If there was a period of inflation — a huge burst ofexpansion just after the beginning of the universe — it would have filled spacewith gravitational waves, and those gravitational waves should be measurable inthe universe today. Several experiments are already searching for them and,next year, the European Space Agency's Planck satellite will make the bestattempt yet: it should be capable of detecting the gravitational wavespredicted by the simplest inflation models. Our model with the colliding branespredicts that the Planck satellite and other similar experiments will detectnothing.   So we can be proved wrong by experiment.
_____
Something I'mespecially excited about right now is that we have been working on the finermathematical details of what happens at the Bang itself. We've made some verygood progress in understanding the singularity, where, according to Einstein'stheory, everything becomes infinite; where all of space shrinks to a point, sothe density of radiation and matter go to infinity, and Einstein's equationsfall apart.
Our new work isbased on a very beautiful discovery made in string theory about ten years ago,with a very technical name. It's called the Anti-De Sitter Conformal FieldTheory correspondence. I won't attempt to explain that, but basically it's avery beautiful geometrical idea, which says that if I've got a region of spaceand time, which might be very large, then in some situations I can imagine thisuniverse surrounded by what we call a boundary — which is basically a boxenclosing the region we are interested in. About ten years ago, it was shownthat even though the interior of this container is described by gravity, withall of the difficulties that brings&mdashlike the formation of black holesand the various paradoxes they cause — all of that stuff going on inside thebox can be described by a theory that lives on the walls of the box surroundingthe interior. That's the correspondence. A gravitational theory corresponds toanother theory which has no gravity, and which doesn't have any of thosegravitational paradoxes. What we've been doing recently is using this frameworkto study what happens at a cosmic singularity which develops in time, withinthe container. We study the singularity indirectly, by studying what happens onthe surface of the box surrounding the universe. When we do this, we find thatif the universe collapses to make a singularity, it can bounce, and theuniverse can come back out of the bounce. As it passes through the singularity,the universe becomes full of radiation–very much like what happens in thecolliding brane model — and density variations are created.
         
Thisis very new work, but once it is completed I think it will go a long waytowards convincing people that the Big Bang, or events like it, are actuallydescribable mathematically. The model we're studying is not physicallyrealistic, because it's a universe with four large dimensions of space. Itturns out that's the easiest case to do, for rather technical reasons. Ofcourse, the real universe has only three large dimensions of space, but we'resettling for a four-dimensional model for the moment, because the math iseasier. Qualitatively, what this study is revealing is that you can studysingularities in gravity and make sense of them. I think that's very excitingand I think we're on a very interesting track. I hope we will really understandhow singularities form in gravity, how the universe evolves through them, andhow those singularities go away.

I suspect thatwill be the explanation of the Big Bang — that the Big Bang was the formationof a singularity in the universe. I think by understanding it we'll be betterable to understand how the laws of physics we currently see were actually setin place: why there is electro-magnetism, the strong force, the weak force, andso on. All of these things are a consequence of the structure of the universe, onsmall scales, and that structure was set at the Big Bang. It's a verychallenging field, but I'm very happy we're actually making progress.
_____
The currentproblem which is dominating theoretical physics — wrongly, I believe, because Ithink people ought to be studying the singularity and the Big Bang since that'sclearly where everything came from, but most people are just avoiding thatproblem — is the fact that the laws of physics we see, according to stringtheory, are a result of the specific configuration of the extra dimensions ofspace. So you have three ordinary dimensions, that we're aware of, and thenthere are supposed to be six more dimensions in string theory, which are curledup in a tiny little ball.  At every point in our world there would beanother six dimensions, but twisted up in a tiny little knot. And the problemis that there is a huge number of ways of twisting up these extra dimensions.Probably, there are an infinite number of ways. Roughly speaking, you can wrapthem up by wrapping branes and other objects around them, twisting them up likea handkerchief with lots of bits of string and elastic bands wound around.
This caused manypeople to pull their hair out. String theory was supposed to be a unique theoryand to predict one set of laws of physics, but the theory allows for manydifferent types of universes with the extra dimensions twisted up in differentways. Which one do we live in? What some people have been doing, because theyassume the universe simply starts after the Bang at some time, is just throwinga dice. They say, okay, well it could be twisted up in this way, or that way,or the other way, and we have no way of judging which one is more likely thanthe other, so we'll assume it's random. As a result, they can't predictanything. Because they don't have a theory of the Big Bang, they don't have atheory of why those dimensions ended up the way they are. They call this thelandscape; there's a landscape of possible universes, and they accept that theyhave no theory of why we should live at any particular place in the landscape.So what do they do?
Well, they say,maybe we need the anthropic principle. The anthropic principle says, theuniverse is the way it is because if it was any different, we wouldn't be here.The idea is that there's this big landscape with lots of universes in it, butthe only one which can allow us to exist is the one with exactly the laws ofphysics that we see. It sounds like a flaky argument & mdashand it is. It's a very flakyargument. Because it doesn't predict anything. It's a classic example ofpostdiction: its just saying, oh well, it has to be this way, because otherwisewe wouldn't be here talking about it. There are many other logical flaws in theargument which I could point to, but the basic point is that this argumentdoesn't really get you anywhere. It’s not predictive and it isn't testable. Theanthropic principle, as it's currently being used, isn't really leading to anyprogress in the subject. Even worse than that, it is discouraging people fromtackling the important questions, like the fact that string theory, as it iscurrently understood, is incomplete and needs to be extended to deal with theBig Bang. That's just such an obvious point, but at the moment surprisingly fewpeople seem to appreciate it.
I'm not convincedthe landscape is real. There are still some reasonable mathematical doubts,about whether all these twisted up configurations are legitimate. It's not beenproven. But if it is true, then how are you going to decide which one of thoseconfigurations is adopted by the universe? It seems to me that whatever you do,you have to deal with the Big Bang. You need a mathematical theory of how BigBangs works, either one which describes how time began, or one which describeshow the universe passes through an event like the Big Bang and, as it passesthrough, there's going to be some dramatic effect on these twisted-updimensions. To me, the most plausible resolution of a landscape problem wouldbe that the dynamics of the universe will select a certain configuration as themost efficient one for passing through Big Bangs and allowing a Universe whichcycles for a very long time.
For example, justto give a trivial example: if you ask, why is the gas in this room smoothlydistributed, we need a physical theory to explain it. It wouldn't be helpful tosay, well if it wasn't that way, there would be a big vacuum in part of theroom and if I walked into it, I would die. If the distribution of gas wasn'tcompletely uniform, we wouldn't last very long. That's the anthropic principle.But it's not the scientific explanation. The explanation is that moleculesjangle around the room and when you understand their dynamics you understandthat it's vastly more probable for them to settle down in a configuration wherethey're distributed nearly uniformly. It's nothing to do with the existence ofpeople.
In the same way, Ithink the best way to approach the cosmological puzzles, is to begin byunderstanding how the Big Bang works. Then, as we study the dynamics of theBang, we'll hope to discover that the dynamics lead to a universe somethinglike ours. If you can't understand the dynamics, you really can't do much,except give up and resort to the anthropic argument. It's an obvious point, butstrangely enough it's a minority view. In our subject, the majority view at themoment is this rather bizarre landscape picture where somebody, or some randomprocess, and no one knows how it happens, chooses for us to be in one of theseuniverses.
_____
The idea behindthe cyclic universe is that the world we experience, the three dimensions ofspace, are actually an extended object, which you can picture as a membrane aslong as you remember that it is three-dimensional, and we just draw it as two-dimensionalbecause that is easier to visualize. According to this picture, we live on oneof these membranes, and this membrane is not alone, there's another partnermembrane, separated from it by a very tiny gap. There are three dimensions ofspace within a membrane, and a fourth dimension separating the two membranes.It so happens that in this theory there are another six dimensions of space,also curled up in a tiny little ball, but let's forgets about those for themoment.
So you have thisset-up with these two parallel worlds, just literally geometrically parallelworlds, separated by a small gap. We did not dream up this picture. Thispicture emerges from the most sophisticated mathematical models we have of thefundamental particles and forces. When we try to describe reality, quarks,electrons, photons, and all these things, we are led to this picture of the twoparallel worlds separated by a gap, and our starting point was to assume thatthis picture is correct.
These membranesare sometimes called "end of the world branes." Basically becausethey're more like mirrors; they're reflectors. There is nothing outside them.They're literally the end of the world. If you traveled across the gap betweenthe two membranes, you would hit one of them and bounce back from it. There'snothing beyond it. So all you have are these two parallel branes with the gap.But these two membranes can move. So imagine we start from today's universe.We're sitting here, today, and we're living on one of these membranes. There'sthis other membrane, very near to us. We can't see it because light onlytravels along our membrane, but the distance away from us are much tinier thanthe size of an atomic nucleus. It's hardly any distance from us at all. We alsoknow that, in the universe today, there's something called "darkenergy." Dark energy is the energy of empty space. Within the cyclictheory, the energy associated with the force of attraction between these twomembranes is responsible, in part, for the dark energy.
Imagine thatyou've got these two membranes, and they attract each other. When you pull themapart you have to put energy into the system. That's the dark energy. And thedark energy itself causes these two membranes to attract. Right now theuniverse is full of dark energy; we know that from observations. According toour model, the dark energy is actually not stable, and it won't last forever.If you think of a ball rolling on a hill, the stored energy grows as the ballgets higher: likewise the dark energy grows as the gap between membraneswidens. At some point, the ball turns around and falls back downhill. Likewise,after a period of dark energy domination, the two branes start to move towardseach other, and then they collide, and that's the Bang. It is the decay of thedark energy we see today which leads to the next Big Bang, in the cyclic model.
Dark energy wasonly observationally confirmed in 1999 and it was a huge surprise for theinflationary picture. There is no rhyme or reason for its existence in thatpicture: dark energy plays no role in the early universe, according toinflationary theory.  Whereas in the cyclic model, dark energy is vital,because it is the decay of dark energy which leads to the next Big Bang.
This picture ofcyclic brane collisions actually resolves one of the longest-standing puzzlesin cyclic models. The idea of a cyclic model isn't new: Friedmann and otherspictured a cyclic model back in the 1930's. They envisaged a finite universewhich collapsed and bounced over and over again. But Richard Tolman soonpointed out that, actually, it wouldn't remove the problem of having abeginning. The reason those cyclic models didn't work is that every bouncemakes more radiation and that means the universe has more stuff in it.According to Einstein's equations, this makes the universe bigger after eachbounce, so that every cycle lasts longer than the one before it. But, tracingback to the past, the duration of each bounce gets shorter and shorter and theduration of the cycles shrinks to zero, meaning that the universe still had tobegin a finite time ago. An eternal cyclic model was impossible, in the oldframework. What is new about our model is that by employing dark energy and byhaving an infinite universe, which dilutes away the radiation and matter afterevery bang, you actually can have an eternal cyclic universe, which could last forever.

NEIL TUROK holds the Chair of Mathematical Physics inthe department of applied mathematics and theoretical physics at Cambridge University. He is coauthor, with Paul Steinhardt, of Endless Universe: Beyond the Big Bang.


[img]http://postfiles15.naver.net/20120318_238/khel3d2oat_1332055102951h4t1b_JPEG/%B2%D9%B9%CC%B1%E2_12031801_Prometheus
回复 顶~ 砸~

使用道具 举报

gohomeman1 发表于 2011-11-23 23:26 | 显示全部楼层 来自: 中国–浙江–宁波 电信
哇靠,很强大啊!

点评

G版夸奖了~~  发表于 2011-11-23 23:29
回复 顶~ 砸~

使用道具 举报

 楼主| 天道无极 发表于 2011-11-24 00:02 | 显示全部楼层 来自: 马来西亚 TMNet电信公司
本帖最后由 天道无极 于 2011-11-24 00:35 编辑

给个视频的链接,还有 "Endless Universe: Beyond the Big Bang”这本书的PDF!喜欢的同好可以随时来下载~


http://treeincarnation.com/branes1.htm



                               
登录/注册后可看大图


Endless Universe.part1.rar (500 KB, 下载次数: 2686)

Endless Universe.part2.rar (500 KB, 下载次数: 2639)

Endless Universe.part3.rar (500 KB, 下载次数: 2686)

Endless Universe.part4.rar (500 KB, 下载次数: 2716)

Endless Universe.part5.rar (83.8 KB, 下载次数: 2636)

回复 顶~ 砸~

使用道具 举报

hmm 发表于 2011-11-24 08:06 | 显示全部楼层 来自: 中国–陕西–西安 联通
不错,学习了!!!
回复 顶~ 砸~

使用道具 举报

lclb9657 发表于 2011-11-24 09:43 | 显示全部楼层 来自: 中国–山东–聊城 联通
有心,用心!我来支持下!

点评

感激不尽~~  发表于 2011-11-24 10:35
回复 顶~ 砸~

使用道具 举报

refla 发表于 2011-11-24 18:39 | 显示全部楼层 来自: 中国–广东–珠海 电信
顶楼主啊!

随便求教 stellar streams 如何翻译?谢谢!

点评

星流(英语:stellar streams)是沿着一条狭长轨道围绕星系运动,由众多恒星组成的链状结构,是球状星团或者矮星系受到星系引力的巨大潮汐作用而逐渐变形、瓦解、撕裂形成的。 http://zh.wikipedia.org/wiki/%E6%98%  详情 回复 发表于 2012-3-27 12:27
Stellar:(形容词)泛指天上的星体/天体!也有主要、首要的意思 stream:(名词)溪流,潮流,意指一连串、源源不断的意思 (动词)流动,鱼贯而行,一个接一个地移动 关于stellar stream,我的想  详情 回复 发表于 2011-11-24 18:50
回复 顶~ 砸~

使用道具 举报

 楼主| 天道无极 发表于 2011-11-24 18:50 | 显示全部楼层 来自: 马来西亚 TMNet电信公司
本帖最后由 天道无极 于 2011-12-1 11:43 编辑
refla 发表于 2011-11-24 18:39
顶楼主啊!

随便求教 stellar streams 如何翻译?谢谢!

Stellar:(形容词)泛指天上的星体/天体!也有主要、首要的意思

stream:(名词)溪流,潮流,意指一连串、源源不断的意思
              (动词)流动,鱼贯而行,一个接一个地移动


关于stellar stream,我的想法是,有可能是指星体的辐射能量流!!当然,正确与否,还要请其他的高手们指正~
回复 顶~ 砸~

使用道具 举报

refla 发表于 2011-11-24 21:13 | 显示全部楼层 来自: 中国–广东–珠海 电信
天道无极 发表于 2011-11-24 18:50
Stellar:(形容词)泛指天上的星体/天体!也有主要、首要的意思

stream:(名词)溪流,潮流,意指一连 ...

谢谢,谢谢大侠指教

点评

:)  发表于 2011-11-24 21:57
回复 顶~ 砸~

使用道具 举报

hhbb 发表于 2011-11-28 20:33 | 显示全部楼层 来自: 中国–湖北–武汉 联通
好资料。谢谢!

点评

不客气!有兴趣的话,也下载那个PDF吧~~  发表于 2011-11-28 23:16
回复 顶~ 砸~

使用道具 举报

星刻 发表于 2011-11-29 16:39 | 显示全部楼层 来自: 中国–天津–天津 联通
富含哲理  很不错的M理论
回复 顶~ 砸~

使用道具 举报

hhbb 发表于 2011-11-29 20:39 | 显示全部楼层 来自: 中国–湖北–武汉 联通
“不客气!有兴趣的话,也下载那个PDF吧~~  ”是中文的吗?

点评

全E文~~  发表于 2011-11-29 20:54
回复 顶~ 砸~

使用道具 举报

人与自然 发表于 2012-3-21 18:53 | 显示全部楼层 来自: 中国–广东–中山 电信
非常不错的帖子,值得推荐给大家认真读一读!

点评

谢谢大家喜欢这个帖子~  详情 回复 发表于 2012-3-22 22:03
回复 顶~ 砸~

使用道具 举报

 楼主| 天道无极 发表于 2012-3-22 22:03 | 显示全部楼层 来自: 马来西亚
人与自然 发表于 2012-3-21 18:53
非常不错的帖子,值得推荐给大家认真读一读!

谢谢大家喜欢这个帖子~
回复 顶~ 砸~

使用道具 举报

seanwillian 发表于 2012-3-27 12:27 | 显示全部楼层 来自: 中国–黑龙江–哈尔滨 联通
refla 发表于 2011-11-24 18:39
顶楼主啊!

随便求教 stellar streams 如何翻译?谢谢!

星流英语:stellar streams)是沿着一条狭长轨道围绕星系运动,由众多恒星组成的链状结构,是球状星团或者矮星系受到星系引力的巨大潮汐作用而逐渐变形、瓦解、撕裂形成的。
http://zh.wikipedia.org/wiki/%E6%98%9F%E6%B5%81

点评

资料~ :)  发表于 2012-4-5 23:03
回复 顶~ 砸~

使用道具 举报

李灼 发表于 2012-4-5 15:29 | 显示全部楼层 来自: 中国–辽宁–沈阳 联通
本帖最后由 李灼 于 2012-4-5 15:38 编辑

楼主翻译辛苦了!详细拜读了。

点评

感谢阅读,欢迎拍砖~ :)  发表于 2012-4-5 23:01
回复 顶~ 砸~

使用道具 举报

lbyl007 发表于 2012-4-16 23:07 | 显示全部楼层 来自: 中国–浙江–杭州 华数宽带
帮顶吧,不错
回复 顶~ 砸~

使用道具 举报

超越光速 发表于 2012-8-18 21:15 | 显示全部楼层 来自: 中国–江苏–苏州 电信
提示: 作者被禁止或删除 内容自动屏蔽
回复 顶~ 砸~

使用道具 举报

混沌星光 发表于 2014-8-1 18:22 | 显示全部楼层 来自: 中国–上海–上海–闵行区 电信
非常科普易懂,比看公式轻松太多了!

点评

仔细的看了一遍,觉得说的很多,解决的问题很少,很玄乎,没有我说的是在。 在此留个记忆。  详情 回复 发表于 2015-1-4 22:22
爱好者看科普! 专家们看门路!  发表于 2014-8-2 02:12
回复 顶~ 1 砸~ 0

使用道具 举报

本版积分规则

APP下載|手机版|爱牧夫天文淘宝店|牧夫天文网 ( 公安备案号21021102000967 )|网站地图|辽ICP备19018387号

GMT+8, 2024-11-21 19:15 , Processed in 0.136823 second(s), 19 queries , Gzip On, Redis On.

Powered by Discuz! X3.5 Licensed

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表