gohomeman1
发表于 2009-9-24 20:49
在拓扑学中,这些边、面的具体形状不是主要的特性,但它们是否连通、如何连通是个很重要的概念。
gohomeman1
发表于 2009-9-24 20:52
大家还可以试验一下,把莫比乌斯带沿中线剪开,将是什么结果呢?
gohomeman1
发表于 2009-9-24 20:53
结果是什么我就不说了,眼光好的看图就明白了;否则自己动手实验一下,很有益的。
gohomeman1
发表于 2009-9-24 20:59
我们已经看过了一个二维纸带的奇特变化,由于我们是在三维空间的,天然的超然地位就使我们能够简单理解这个特点。下面,我们将看看如果这样的变化发生在三维的实体上,将会如何。
这是一个圆柱体,中间是穿孔的。很显然,它也有2条边、两个面,或者说,与圆环差不多,但我们的变换方向将不同。
gohomeman1
发表于 2009-9-24 21:13
让我们把圆柱体沿着径向延伸并扭曲回来,就像个尾巴一样
gohomeman1
发表于 2009-9-24 21:24
本帖最后由 gohomeman1 于 2009-9-24 21:27 编辑
接着,我们要做一步很特别的操作。假如我们只是简单的把它盘回来,那不过是个圆环。
虽然它是无边的,不过还是有里外两个面,而且,这两个面现在就算在三维空间中,如果不在环上钻个孔,显然里外两面永远无法连通,比前面的普通纸带还不如(它们可以越过边而相通)。
gohomeman1
发表于 2009-9-24 21:28
是的!我们就是要钻孔进入自己的身体……
gohomeman1
发表于 2009-9-24 21:30
然后我们还要像前面扭曲带子一样,把里面翻到外面来……
gohomeman1
发表于 2009-9-24 21:32
本帖最后由 gohomeman1 于 2009-9-24 21:35 编辑
最后得到的东西就是这个怪怪的东东——克莱因瓶!
gohomeman1
发表于 2009-9-24 21:48
本帖最后由 gohomeman1 于 2009-9-24 21:50 编辑
这个瓶由德国数学家Felix Christian Klein首先提出的,以他的名字命名。我们注意到它的一个极为特殊的特性:
它不但无边,而且它的面是里外相通的!它没有普通瓶的瓶口(瓶边)。
其实按wikipedia的说法,原文应该是“Fläche”,它是面的意思,而且从数学来说,这确实是一个很特殊的面,尤其在100多年前提出时。不过,虽然误写为“Flasche”(瓶),这个词同样非常合适。下图是一个玻璃吹制的实例。
gohomeman1
发表于 2009-9-24 21:55
不过,我们仔细的看这个瓶,会发现它有个问题:在某些区域中,瓶发生了重叠,这与莫比乌斯带完全不重叠可不相同。
事实上,这是因为Klein Bottle是个四维的物体,我们把它硬挤入了三维空间,自然就只能如此了。
gohomeman1
发表于 2009-9-24 21:57
怎么来理解这个问题呢?我们先看看这个“扭结”。
gohomeman1
发表于 2009-9-24 21:59
本帖最后由 gohomeman1 于 2009-9-24 22:03 编辑
上图貌似一条线断成了三截?我们都知道,这不过是一根扭着的线在二维平面的投影结果而已,事实上在三维空间中,这条线完全是正常的。
类似的图形,曾经是香港亚洲电视(ATV)的logo。
gohomeman1
发表于 2009-9-24 22:09
同样的,克莱因瓶的重叠部分,其实是通过我们看不见的第4维空间(注意,不是时间)来实现的,它们并不重叠。
gohomeman1
发表于 2009-9-24 22:18
数学上的四维空间,我们可以用(w,x,y,z)来表示,与三维的(x,y,z)比,第4维的w轴与x、y、z三个轴都垂直。这点貌似很难理解是吧?要画图出来是不可能了,就像二维的图总是不能与真实的三维物体等价一样。但是,我们不是都透过二维投影图来表示三维物体的吗?现在的三维软件,除了那些借助红蓝眼镜和高速显示器显示的“真”3D显示外,绝大部分不都是通过二维来显示三维吗?我们觉得它们的立体效果很好啊!
所以,我们也可通过这种手段间接了解4维空间。
gohomeman1
发表于 2009-9-24 22:37
这是一个四维的超立方体在三维空间的投影之一。
注意,与立方体的二维投影不同,它不止一个投影。
gohomeman1
发表于 2009-9-24 22:48
本帖最后由 gohomeman1 于 2009-9-24 23:04 编辑
立方体有8个顶点,12条边,6个面。而四维的超立方体有16个顶点,32条棱,24个面,8个体。点、棱对应一维,面对应二维,体对应三维。
这是超立方体的顶点投影,表明所有的顶点距离相同。
gohomeman1
发表于 2009-9-24 22:57
这是超立方体的面投影
gohomeman1
发表于 2009-9-24 22:58
超立方体的立体投影之一。
hiblue
发表于 2009-9-24 23:16
不错的图, 还有吗?
页:
1
2
[3]
4
5
6
7
8
9
10