本帖最后由 目标柏林 于 2011-5-20 22:02 编辑
严格来说,放大倍率应当是像的大小与物的大小的比例。例如佳能百微镜头最大放大倍率为1倍,即指物距为其最近对焦距离时,物的大小等于像的大小。由于物距的倒数与像距的倒数之和为焦距的倒数,因此缩短物距或延长像距,有利于实现更大的倍率。如显微镜,对于同一个物镜,其像距是定死的(如160,180和无限远系统),物距自然也是固定不变的,因此放大倍率也是不变的。
再回过头说望远镜。由于天文望远镜是无限远成像,入射光为平行光,整个相机不产生角放大,所以直焦摄影时,根本就没有放大倍率这个概念。我们设主镜焦距为f,目标在天球对物镜透镜中心的张角为θ,在底片上的线间距为x,则
tan(θ/2)=x/2f.
我们采用近似处理,tan(θ/2)=θ/2,解得
x=fθ.
通过这个等式,我们可以得到这些结论:
1.对于无限远的面目标,延长主镜焦距,可以在底片上得到更大的像,各星象之间的距离的确显得拉远了,但它们在焦平面上的角间距不变。当然,超过理论极限后(这里的理论极限既包括镜头的分辨率,也包括底片或人眼或CCD/CMOS的解析力。对于前者,如果忽略像差和面型精度,可用瑞利判据求得,它是口径、遮挡比和入射光波长的函数),更大的像就不再带来更多的细节。举个例子,物镜焦距相同,且不过长,两个CCD的像素密度不同,高密度CCD能解析出的双星,可能低密度的就解不开(当然,在同等技术条件下,高像素密度的代价就是较低的宽容度和较差的控噪能力了)。再举个例子,当CCD像素密度和物镜口径一定时,焦距过长,细节不更增多,出片放大到100%看就有点马赛克的味道了。
2.采用画幅更大的底片,可以获得更大的视场(前提是镜头要有足够的像场,否则画幅超过限度会有暗角,视场不再提升)而所谓“小画幅赚长焦”,实际上就是相当于从更大的画幅裁切出中间的部分,从透视效果上看,与折算焦距转换系数后的镜头是一样的。当然无限远目标根本谈不上什么透视效果了。
但是接上目镜时的放大倍率,实际上是“拉近倍率”,是有角放大能力的,其角放大率等于物镜和目镜的焦距之比。当然,超过理论极限后,角放大能力的大小与解析力的高低就没有关系了,即无效放大。
参考书籍:【美】M.L.库特纳著,萧耐园、胡方浩译 《天文学——物理新视野》 第4章,本书由湖南科学技术出版社于2005年出版. |
|