QQ登录

只需一步,快速开始

APO vs. not APO

[复制链接]
yanbinemail 发表于 2005-11-8 12:43 | 显示全部楼层 |阅读模式 来自: 美国–纽约州–纽约–纽约市

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?加入牧夫(请注明天文爱好者,否则无法通过审核,请勿使用gmail/outlook/aol/icloud邮箱注册)

×
ok,这里是我在TMB学到的:
APO的意义,是阿贝在19世纪末定义的。1875年,阿贝遇到蔡司,当时蔡司还是一个制作显微镜,放大镜和光学附件的小公司。1879年,阿贝遇到斯考特,他们一起找到了一种特别散射系数的玻璃,阿贝发现使用萤石可以达到复消色差。复消色差显微镜极具竞争力,使得蔡司占据了近乎全部高端市场。阿贝为了保密,在技术资料中用X(未知)代替萤石。
阿贝对复消色差的定义是,透镜对3种波长焦距相等,并对2种波长校正球差,彗差。
说起来简单做起来难。消除色差不难,用2片透镜就可以做到普通消色差(2色),高级消色差(3色),超级消色差(4色),特级消色差(5色)。但这并不代表就消除了其他象差。依旧不能称做APO。一般来说,3色是指F,E和C线(4861埃,5461埃,6563埃),消除这3色的透镜有的厂家就称为APO。但是球差和彗差可能依旧存在,甚至比一台f/15的普消还差。
阿贝对2色球差进行校正,实际上就对这2色之间的所有波长消除了球差(消色球差)。只有极长的焦距,宽空气距离,非球面,高级佩兹伐设计或它们的组合才可以达到这个标准。不同厂家使用不同的玻璃,不同的厂家对“消除”(就是说限制在多大范围内)的定义也不同。Al Nagler使用宽空气距离,高级佩兹伐设计,萤石和一种特殊玻璃。Takahashi最新的ED3组APO使用宽空气距离.AP使用高质SD(FPL-53)和特别相配的冕牌玻璃。TMB使用类似FPL-53的俄制OK4的SD及特制的冕牌玻璃。
一个很有意思的故事:
我在阅读其他人对各种各样的镜子的评论的时候,看到有一篇高档(AP5寸APO,TAK10寸RC等)的观测记录,最后谈到他们一行人在观测的最后参观了一个专业天文台并使用那里的36寸的古董折射镜观测木星,“虽然这个古老的物镜使用3片结构,f/数也已经达到了19,可还是可以看到明显的兰紫色色差。但是它所提供的细节,远远超过所有我们手中的任何一台现代高级/超级望远镜。更可悲的是,甚至连它的导星镜都不如”
老咸鱼 发表于 2005-11-8 13:40 | 显示全部楼层 来自: 中国–上海–上海 电信/Intel中国北京或上海研发中心
在天之文已经砸过一砖了,这次就不砸了。
回复 顶~ 砸~

使用道具 举报

神州扫雷 发表于 2005-11-8 14:04 | 显示全部楼层 来自: 中国–浙江–杭州 电信
"消除色差不难,用2片透镜就可以做到普通消色差(2色),高级消色差(3色),超级消色差(4色),特级消色差(5色)。"

看来折射率曲线这一节,楼主还要重学。
回复 顶~ 砸~

使用道具 举报

老咸鱼 发表于 2005-11-8 15:02 | 显示全部楼层 来自: 中国–上海–上海 电信/Intel中国北京或上海研发中心
手痒不砸不行啊。
人家TMB的原你曲解成什么样了啊?
This definition is not as simple as it sounds. I have designed thousands of lenses: simple achromats, complex achromats, semi-apos, apochromats, super-achromats, hyper-achromats, and Baker super-apochromats.
到了你这里就变成:
说起来简单做起来难。消除色差不难,用2片透镜就可以做到普通消色差(2色),高级消色差(3色),超级消色差(4色),特级消色差(5色)。
都成什么样子了??

还好本人略通洋文,献丑节译本段的正解给大家看看:
这个定义并非象听起来的那么简单。我设计了数千个镜头:简单的消色差,复杂的消色差,半复消色差,复消色差,超消色差,特消色差,还有Baker超消色差。(Baker是个光学设计师)
回复 顶~ 砸~

使用道具 举报

老瞧 发表于 2005-11-8 15:09 | 显示全部楼层 来自: 中国–北京–北京–海淀区 联通
提示: 作者被禁止或删除 内容自动屏蔽
回复 顶~ 砸~

使用道具 举报

 楼主| yanbinemail 发表于 2005-11-8 15:14 | 显示全部楼层 来自: 美国–纽约州–纽约–纽约市
老咸鱼:1。如果你继续往下看原文,就知道我的理解是对的了。2。我只是把我的理解写出来,没有必要原文翻译。
神州扫雷:用特殊折射率的2片物镜,可以消除超过2个波长的色差。
回复 顶~ 砸~

使用道具 举报

老咸鱼 发表于 2005-11-8 15:24 | 显示全部楼层 来自: 中国–上海–上海 电信/Intel中国北京或上海研发中心
眼拙没看到,可否帖出你说的那部分原文来?
回复 顶~ 砸~

使用道具 举报

老咸鱼 发表于 2005-11-8 15:29 | 显示全部楼层 来自: 中国–上海–上海 电信/Intel中国北京或上海研发中心
另外,特殊折射率的玻璃,不知道牌号是什么啊?是O家的FPL53还是S家的LaSFN31呢?
回复 顶~ 砸~

使用道具 举报

 楼主| yanbinemail 发表于 2005-11-8 15:35 | 显示全部楼层 来自: 美国–纽约州–纽约–纽约市
原文:
Defining Apochromatism
by Thomas Back
Updated 6-29-03

With the proliferation of apochromatic refractors that are available to the amateur astronomer, it is time to define the parameters of a true apochromatic objective lens. The modern definition of "apochromat" is the following: An objective in which the wave aberrations do not exceed 1/4 wave optical path difference (OPD) in the spectral range from C (6563A - red) to F (4861A - blue), while the g wavelength (4358A - violet) is 1/2 wave OPD or better, has three widely spaced zero color crossings and is corrected for coma.

Here is a more detailed analysis for those that are interested. The term "Apochromat" is loosely used by many manufacturers and amateurs astronomers. Let's look at the history of the definition, and maybe a more modern one. Ernst Abbe, in 1875, met and worked for Carl Zeiss, a small microscope, magnifier and optical accessory company. They realized that they needed to find improved glass types, if they were going to make progress with the optical microscope. In 1879, Abbe met Otto Schott. Together they introduce the first abnormal dispersion glasses under the name of Schott and Sons. Abbe discovered that by using optically clear, polished natural fluorite, in a microscope objective, that apochromatism could be achieved. These first true apochromatic microscope objectives were so superior to the competition, that Zeiss gained nearly the entire high end market. So secret was the use of fluorite, that Abbe marked an "X" on the data sheet for the fluorite element, so as to keep it secret from the other optical companies.

Abbe's definition of apochromatism was the following. Apochromat: an objective corrected parfocally for three widely spaced wavelengths and corrected for spherical aberration and coma for two widely separated wavelengths. This definition is not as simple as it sounds. I have designed thousands of lenses: simple achromats, complex achromats, semi-apos, apochromats, super-achromats, hyper-achromats, and Baker super-apochromats. Abbe's definition, to put it in clearer terms (I hope) is that a true apochromat is an objective that has three color crossings that are spaced far apart in the visual spectrum (~4000A, deep violet to ~7000A, deep red). However, just because a lens has three color crossings, doesn't mean that it is well corrected. Let's say that a 4" lens has three color crossings at the F, e and C wavelengths (4861A, 5461A and 6563A). Fine, this objective is now considered an apochromat by most amateurs and even optical designers because it has three color crossings in the blue, green and red -- the common definition of an apochromat. But what about the levels of spherical aberration at each of these wavelengths? If the lens is 2 waves overcorrected at 4861A, and 1.5 waves undercorrected at 6563A, is it still an apochromat? No. It is no better than an achromat, as the OPD wavefront error is worse than a 4" f/15 achromat.

Abbe, in his definition of apochromat, states that spherical aberration must be corrected for two widely spaced wavelengths. Now I will tell you what happens when you correct spherical for two widely spaced wavelengths: you correct for all the wavelengths between them too. This is called correcting for spherochromatism (the variation of spherical aberration with a change in wavelength). Only with extremely long focal lengths, advanced Petzval designs, aspherics, large air spaces, or a combination of these designs/factors, can you correct for this aberration. It is the designer that must come up with a good compromise of color correction, lack of spherical aberration (3rd order and zonal) and controlling spherochromatism, so as not to degrade the image contrast. Al Nagler uses a wide air-spaced Petzval design with Fluorite and an exotic glass in his top of the line apochromats to control the above aberrations. Takahashi's latest ED apo triplets use a large air space. Roland Christen (Astro-Physics) uses a very high quality super ED glass (FPL-53) and specially matched crowns to control the various aberrations (he also slightly aspherizes the outer surfaces). TMB Optical uses Russian OK-4 super ED glass (similar to FPL-53) with an outer crown and a special dense crown glass, using air spacing with different internal radii, and hand figuring to control these aberrations.

Also, the Abbe condition of coma correction is overstated, that is, if a lens is well corrected for coma at one wavelength, in almost all cases it will be corrected for coma at all the visual wavelengths. Now you might ask, after all this, just what is a modern definition of apochromatism? Well, as you read, it is not only three color crossings. One of the first things an optical designer discovers is that with catalog glass data, it is easy to design lenses with three or even four color crossings (super-achromat). But when you get 6 place data, these designs often breakdown to only two or three color crossings (that is not to say that a 4 color crossing objective cannot be made -- it can), albeit with the chromatic focal shift being very small. What is really important is how small the chromatic focal shift is (not the zero crossings) over a wide spectral range, and how low the spherical aberration is over that same range. So we are left with an ambiguous definition.

After designing, testing and selling many different apochromatic lenses I can state this: There is no "definite" line where a lens becomes "apochromatic" in the world of commercial apochromatic lenses.

But any lens, be it a doublet, triplet, quad, air-spaced or Petzval, that has a peak visual null (~5550A - the green-yellow) with a Strehl ratio of .95 or better, coma corrected and is diffraction limited from C (red) to F (blue) with 1/4 wave OPD spherical or better, has good control of the violet g wavelength with no more than 1/2 wave OPD P-V spherical and optical spot sizes that concentrate the maximum amount of photons within the diffraction limit -- a result of the low spherical aberration, which can be seen with modern optical design programs, as the "spot rays" will be seen concentrated in the center of the spot, not evenly or worse, concentrated outside the center -- will satisfy the modern definition of "Apochromatism."

Lenses of this quality do not satisfy the Abbe definition, but for all intents and purposes, will be color free and will give extremely sharp and contrasty images.

Thomas M. Back
TMB Optical
回复 顶~ 砸~

使用道具 举报

 楼主| yanbinemail 发表于 2005-11-8 15:39 | 显示全部楼层 来自: 美国–纽约州–纽约–纽约市
另外这篇发faq值得看看
http://www.tmboptical.com/documents/tmbFAQ.pdf
回复 顶~ 砸~

使用道具 举报

 楼主| yanbinemail 发表于 2005-11-8 15:46 | 显示全部楼层 来自: 美国–纽约州–纽约–纽约市
老咸鱼, 天之文上有这篇文章?能给个连接吗?
回复 顶~ 砸~

使用道具 举报

老咸鱼 发表于 2005-11-8 15:54 | 显示全部楼层 来自: 中国–上海–上海 电信/Intel中国北京或上海研发中心
回复 顶~ 砸~

使用道具 举报

 楼主| yanbinemail 发表于 2005-11-9 10:33 | 显示全部楼层 来自: 美国–新泽西州–哈德逊–北伯根 DigitalOcean
谢谢链接。你的主页我上去浏览了,很漂亮,似乎挺专业的样子。 8) 相信你的镜子会很好。
回复 顶~ 砸~

使用道具 举报

神州扫雷 发表于 2005-11-9 11:38 | 显示全部楼层 来自: 中国–浙江–杭州 电信
因为偶刚在看折射率曲线的Cauchy公式。

如果它是错的,那么两片镜子可以消100个波长的色差。

我不信厂家的,没办法。
回复 顶~ 砸~

使用道具 举报

 楼主| yanbinemail 发表于 2005-11-9 12:02 | 显示全部楼层 来自: 美国–新泽西州–哈德逊–北伯根 DigitalOcean
知道了, :wink: 神州扫雷
回复 顶~ 砸~

使用道具 举报

 楼主| yanbinemail 发表于 2005-11-10 03:28 | 显示全部楼层 来自: 美国
但是2片透镜至少是可以把3个颜色重合在有限的范围的
回复 顶~ 砸~

使用道具 举报

seeksky893 发表于 2005-11-10 14:25 | 显示全部楼层 来自: 中国–山东–青岛 联通
1片透镜可以把所有颜色重合在有限的围内.关键是看你怎么定义这个有限范围.


"有限范围"和完全消去是不同的.
回复 顶~ 砸~

使用道具 举报

 楼主| yanbinemail 发表于 2005-11-12 10:48 | 显示全部楼层 来自: 美国–纽约州–纽约–纽约市
有些人就喜欢抬杠较真,眼睛还可一看见很多“细节”呢!--看你怎么定义细节的范围了。
优秀的2片镜(如ED,SD)可以做到近似apo吧。
回复 顶~ 砸~

使用道具 举报

skywacher 发表于 2005-11-13 01:09 | 显示全部楼层 来自: 中国–北京–北京 金汉王通信有限公司

看了诸位在"天之文"上的讨论,也看了"景得"自己网站上贴的片子.从星点来看,那款镜子存在轴向色差(亮恒星的蓝圆边)和球差.另外,天文摄影作品中一般较暗恒星的红圆边是恒星的红移造成的.
回复 顶~ 砸~

使用道具 举报

本版积分规则

APP下載|手机版|爱牧夫天文淘宝店|牧夫天文网 ( 公安备案号21021102000967 )|网站地图|辽ICP备19018387号

GMT+8, 2024-11-23 19:07 , Processed in 0.093240 second(s), 18 queries , Gzip On, Redis On.

Powered by Discuz! X3.5 Licensed

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表