QQ登录

只需一步,快速开始

求助:谁E文好的,有空帮忙把这个翻译一下

[复制链接]
周星驰 发表于 2011-10-20 10:16 | 显示全部楼层 |阅读模式 来自: 中国–上海–上海–长宁区 电信/普陀区电信

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?加入牧夫(请注明天文爱好者,否则无法通过审核,请勿使用gmail/outlook/aol/icloud邮箱注册)

×
求助:谁有空帮忙把这个翻译一下。本人实在没有时间了,忙于工作。看到这篇文章应该能给大家一起学习的机会。原文:http://www.telescope-optics.net/maksutov_cassegrain_telescope.htm
                                10.2.3.3.                Maksutov-Cassegrain telescope                               
                Full-aperture meniscus corrector can be also used in various                 arrangements, including two-mirror systems, as described in Maksutov's                 extensive writings between 1941 and 1946. Nowadays, it is most                 often used in the                 Cassegrain configuration (FIG.                 118), hence these systems are known as Maksutov-Cassegrain                 telescopes (MCT). The benefit of such an arrangement is - similarly to that in                 combination with the Schmidt corrector - greater flexibility in                 correcting primary aberrations than in an all-reflecting system. As it                 will be illustrated in this text, an MCT with separate secondary can be                 made corrected for all aberrations (correcting field curvature requires                 large secondary mirror) in an all-spherical arrangement. In addition,                 corrector's chromatism can be made nearly non-existent.
               
                However, in compact systems with fast                 primary mirrors, strongly curved surfaces of Maksutov corrector quickly                 begin to generate higher-order spherical aberration, which changes in                 proportion to the aperture and, approximately, with the fourth power of                 primary's relative aperture. It can only be corrected by applying                 aspheric surface term to either mirrors or the corrector - something too                 complex to be viable for amateur telescopes. While it varies somewhat                 with the specifics of corrector, acceptable optical quality in this                 respect doesn't extend significantly beyond a 6"                 ƒ/2.5 primary level.                 Another option is to have the primary aspherised, which allows for                 weaker corrector, with reduced higher-order spherical aberration.
                               
               

                               
登录/注册后可看大图
                                       
                        FIGURE 118: Maksutov-Cassegrain                         telescope optical elements. Meniscus corrector, which induces not                         only spherical, but also off-axis aberrations, offers greater                         flexibility in correcting system aberrations. As a result,                         Maksutov-Cassegrain can be made free from coma and astigmatism in a                         compact all-spherical arrangement. The weak point is strong                         higher-order spherical aberration with fast primary mirrors that                         require strongly curved corrector surfaces. It can not be corrected                         in an all-spherical arrangement. Secondary mirror can be either an                         aluminized spot on the rear of corrector, or a separate surface,                         which generally allows for better field quality.

               
                First published telescope arrangements in                 the U.S. that followed the                 1941 introduction of full-aperture meniscus corrector for spherical                 mirror was a pair of two-mirror Cassegrain systems -                 ƒ/15 and                 ƒ/23 - and                 Maksutov-type corrector by John Gregory in 1957. In it, the secondary                 was an aluminized spot at the back surface of the corrector. At the                 time, Lawrence Braymer was already producing his                 famous-to-be Questar Maksutov-Cassegrain, a design very similar to                 Gregory's (in order to avoid patent infringement, Questars had - for                 about a decade - the aluminized spot placed at the front meniscus                 surface). As a later development, an arrangement with separate secondary                 was introduced. Nowadays, both Gregory-type and the arrangement with                 separated secondary are being used in various forms. In general,                 separate secondary is preferred, since it gives additional degrees of                 freedom for correction of                 aberrations (FIG. 119).
                                       
                       

                               
登录/注册后可看大图

                        FIGURE 119: Two basic                         Maksutov-Cassegrain arrangements: (a) all-spherical with an                         aluminized spot on the back of corrector for the secondary                         (Gregory-style), and (b) with separated secondary. Due to                         design limitations imposed by the two surfaces of identical radius                         of curvature, the former has noticeably inferior off-axis                         performance: at 0.5° off-axis the wavefront error (best surface) is                         0.24 wave RMS, mostly due to the coma, but also astigmatism. The                         design with separated secondary is highly corrected, with less than                         0.025 wave RMS wavefront error at 0.5° off-axis. It is also better                         corrected axially (1/43 vs. 1/33 wave RMS), with lower field                         curvature due to both, lower astigmatism and larger secondary. Some                         lateral color (LC) is noticeable. Both  systems have very low chromatism:                         0.09 and 0.075 wave RMS combined h- and r-line on                         axis.                                                     SPEC'S                       
                       

                               
As described in the                 previous section, full-aperture meniscus corrector has properties making                 it quite complex optically. Part of it is due to its steeply curved                 surfaces, generating relatively significant amount of higher-order                 aberrations. It is a thick lens, requiring more complex expressions for                 accurate assessment. Also, its relatively strong power makes system                 properties - including spherical aberration level - dependant on its                 location relative to the mirror. In two-mirror systems, this only                 becomes more complicated with the secondary mirror added. As a result,                 the path to defining a working system of this kind is fairly                 complicated, and can not be expressed with reasonably small set of                 equations.
               
With the arrangement                 with an aluminized spot for the secondary, needed secondary curvature                 for desired focus location determines back radius of the corrector, thus                 the only variable is corrector thickness and, to that extent, the front                 radius. The secondary curvature itself is determined by the properties                 of primary, which in turn are known only with the corrector properties                 specified. However, there is a typical level of the effect of the                 corrector on the primary, which can be used to obtain better initial                 approximation of needed system properties (FIG.                 120).
                                       
                                                                       

                               
登录/注册后可看大图

                       
FIGURE 120:
                        Effect of placing full-aperture                         meniscus corrector in a two-mirror system (dotted blue). Being thicker toward the                         edges, meniscus delays outer portions of the flat incoming wavefront                         more, changing its form into convex toward the primary. As a result,                         the outer rays diverge, as if coming from an object placed at                         meniscus' focal point (in terms of lens power, the meniscus is a                         negative lens). Due to the aperture stop being displaced from the                         primary, ray height at the primary is greater than at the first                         corrector surface (aperture opening), making the primary's optical                         radius                         larger. It also focuses (F1')                         farther away than without corrector in place (F1). Ray height on the                         secondary also increases from kd (k being the height                         in units of the aperture radius d) to (k+
D)d.                         Since the corrector causes primary mirror to form its image farther away from the secondary, it                         re-images it at a greater distance from its surface, shifting the                         final focus F' farther out. Changes in the                         ray/wavefront geometry resulting from corrector's power change aberration contributions of the two                         mirrors. Typical ray height increase on the primary due to                         corrector's power is 3%-4%, and primary's effective                         focal ratio                         F is reduced to ~(F-0.1). These quantities help in the initial                         estimate of needed properties of the secondary and the corrector for                         given primary mirror.
                       

                               
Meniscus corrector for                 an MCT can be closely approximated based on                Eq. 128-128.1, for                 a single mirror system, corrected for spherical aberration induced by                 secondary mirror. The correction is determined by                Eq. 154, and implemented by substituting                 [1/(1+s')1/3]R                 for R in Eq. 126.                 Since s' value is typically around 1/3 (neglecting the minus                 sign, which merely indicates aberration opposite in sign to that of the                 primary), the front meniscus radius in an MCT is generally somewhat weaker than for                 meniscus that would correct aberration of the primary alone; rear                 radius is then calculated based on the front radius approximation, as                 given with Eq. 128.1.
               
Two-mirror                 Maksutov system aberrations are addressed in more details in the                 following chapter. While fourth-order coefficients - in particular                 for spherical aberration - are not sufficiently accurate for determining                 final system properties, they are necessary for understanding                 system's properties.
                                    

本版积分规则

APP下載|手机版|爱牧夫天文淘宝店|牧夫天文网 ( 公安备案号21021102000967 )|网站地图|辽ICP备19018387号

GMT+8, 2025-1-26 16:40 , Processed in 0.062986 second(s), 6 queries , Gzip On, Redis On.

Powered by Discuz! X3.5 Licensed

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表